Chen Shiqi, Valenton Emmanuel, Rotskoff Grant M, Ferguson Andrew L, Rice Stuart A, Scherer Norbert F
Department of Chemistry, <a href="https://ror.org/024mw5h28">University of Chicago</a>, Chicago, Illinois 60637, USA.
James Franck Institute, <a href="https://ror.org/024mw5h28">University of Chicago</a>, Chicago, Illinois 60637, USA.
Phys Rev E. 2024 Oct;110(4-1):044109. doi: 10.1103/PhysRevE.110.044109.
Entropy production is an essential aspect of creating and maintaining nonequilibrium systems. Despite their ubiquity, calculation of entropy production rates is challenging for high-dimensional systems, so it has only been reported for simple (i.e., l-particle) systems. Moreover, there is a dearth of nontrivial experimental systems where precise measurements of entropy production rate and characterization of the nonequilibrium steady state (NESS) are simultaneously possible. We report an approach to calculate the entropy production rate of overdamped, nonconservative, N-body systems and demonstrate this on a six-particle triangle optical matter (OM) system as a nontrivial example. OM systems consist of (nano-)particles organized into ordered arrays that are bound by electrodynamic interactions associated with the scattering and interference of light, and the associated induced-polarizations in and among the particles in coherent optical beams. The flux of laser light in OM systems in a solution environment necessitates that they dissipate energy, produce entropy, and relax to a NESS. The NESS may have several ordered particle configurations (i.e., isomers) that can interchange by barrier crossing processes. Understanding the power dissipation and entropy production rate of a NESS in an OM system along different (collective) modes of motion can advance understanding of the relative stability of the NESSs as well as inform design and control of OM structures. Therefore, we compute the components of the entropy production rate and power dissipation along the collective coordinates of the 6 Ag nanoparticle triangle OM system from OM NESS trajectory data and verify the Seifert relation [U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)10.1088/0034-4885/75/12/126001] for these complex systems with a nuanced interpretation.
熵产生是创建和维持非平衡系统的一个重要方面。尽管它们无处不在,但对于高维系统而言,计算熵产生率具有挑战性,因此目前仅在简单(即单粒子)系统中有相关报道。此外,缺乏能同时精确测量熵产生率和表征非平衡稳态(NESS)的重要实验系统。我们报告了一种计算过阻尼、非保守N体系统熵产生率的方法,并以一个六粒子三角形光学物质(OM)系统为例进行了演示,该系统即为一个重要实例。OM系统由(纳米)粒子组成,这些粒子排列成有序阵列,通过与光的散射和干涉相关的电动力学相互作用以及相干光束中粒子内部和之间的感应极化相互束缚。在溶液环境中,OM系统中激光的通量要求它们耗散能量、产生熵并弛豫到一个NESS。NESS可能有几种有序的粒子构型(即异构体),它们可以通过势垒穿越过程相互转换。了解OM系统中NESS沿不同(集体)运动模式的功率耗散和熵产生率,有助于深入理解NESS的相对稳定性,并为OM结构的设计和控制提供依据。因此,我们根据OM NESS轨迹数据计算了6个银纳米粒子三角形OM系统沿集体坐标的熵产生率和功率耗散分量,并对这些复杂系统以一种细致入微的解释验证了塞弗特关系[U. 塞弗特,《物理进展报告》75,126001(2012年)10.1088/0034 - 4885/75/12/126001]。