Suppr超能文献

空材料成分空间的加速探索:镁-铁-硼三元金属硼化物

Accelerated Exploration of Empty Material Compositional Space: Mg-Fe-B Ternary Metal Borides.

作者信息

Zhang Zhen, Chen Shiya, Zheng Feng, Antropov Vladimir, Sun Yang, Ho Kai-Ming

机构信息

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States.

Department of Physics, Xiamen University, Xiamen 361005, China.

出版信息

J Am Chem Soc. 2024 Dec 4;146(48):33179-33192. doi: 10.1021/jacs.4c12648. Epub 2024 Nov 19.

Abstract

Borides are a family of materials with valuable properties for various applications. Their diverse structures and compositions, yet disparity in the constituent chemical elements for the known compounds, give elemental substitutions for prototypes great potential for material discovery. To explore uncharted material compositional space, we develop a workflow that joins high-throughput crystal structure prediction and automated diffraction pattern matching to discover new compounds with significant prediction and synthesis hurdles. Utilizing the workflow, we explore the empty Mg-Fe-B ternary compositional space, previously uncharted largely due to the immiscibility of Mg and Fe, as a paradigm. A total of 275 ternary boride prototypes are classified, using which we predict 23 (158) stable and metastable ternary phases within 50 (200) meV/atom above the convex hull. We identify Gd(FeB)-type MgFeB and ZrCoB-type MgFeB to match previously unsolved experimental powder X-ray diffraction (PXRD) patterns. The discovered MgFeB and related channeled structures feature mismatched Mg and (FeB) sublattice periods, for which we conduct structural analyses with respect to the PXRD. They are predicted to exhibit exceptionally fast superionic transport of Mg and outstanding electrochemical performance, which serve as post-Li-ion battery candidate electrode materials. This result opens a new avenue for borides' potential applications as electrode materials and fast ionic conductors. This work also portrays the map and landscape of ternary metal borides with similar chemical environments. With high efficiency, the prototype- and PXRD-assisted crystal structure prediction workflow opens a new avenue for exploring various material compositional spaces across the periodic table.

摘要

硼化物是一类具有多种宝贵特性、适用于各种应用的材料。它们具有多样的结构和组成,然而已知化合物中组成化学元素的差异,使得对原型进行元素替代在材料发现方面具有巨大潜力。为了探索未知的材料组成空间,我们开发了一种工作流程,该流程将高通量晶体结构预测与自动衍射图谱匹配相结合,以发现具有重大预测和合成障碍的新化合物。以先前因镁和铁互不相溶而基本未被探索的空的Mg-Fe-B三元组成空间为例,利用该工作流程进行研究。总共对275种三元硼化物原型进行了分类,据此我们预测了在凸包上方50(200)毫电子伏特/原子范围内的23种(158种)稳定和亚稳三元相。我们确定了Gd(FeB)型MgFeB和ZrCoB型MgFeB与先前未解决的实验粉末X射线衍射(PXRD)图谱相匹配。所发现的MgFeB及相关的通道结构具有不匹配的镁和(FeB)亚晶格周期,为此我们针对PXRD进行了结构分析。预计它们将表现出异常快速的镁超离子传输和出色的电化学性能,可作为锂离子电池后的候选电极材料。这一结果为硼化物作为电极材料和快速离子导体的潜在应用开辟了一条新途径。这项工作还描绘了具有相似化学环境的三元金属硼化物的图谱和概况。通过高效的原型和PXRD辅助晶体结构预测工作流程,为探索整个周期表中的各种材料组成空间开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验