Suppr超能文献

Deep-m5U:一种基于深度学习的方法,用于使用优化的特征集成进行 RNA 5-甲基尿嘧啶修饰预测。

Deep-m5U: a deep learning-based approach for RNA 5-methyluridine modification prediction using optimized feature integration.

机构信息

Business and Management Sciences Department, Purdue University, West Lafayette, IN, USA.

Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.

出版信息

BMC Bioinformatics. 2024 Nov 19;25(1):360. doi: 10.1186/s12859-024-05978-1.

Abstract

BACKGROUND

RNA 5-methyluridine (m5U) modifications play a crucial role in biological processes, making their accurate identification a key focus in computational biology. This paper introduces Deep-m5U, a robust predictor designed to enhance the prediction of m5U modifications. The proposed method, named Deep-m5U, utilizes a hybrid pseudo-K-tuple nucleotide composition (PseKNC) for sequence formulation, a Shapley Additive exPlanations (SHAP) algorithm for discriminant feature selection, and a deep neural network (DNN) as the classifier.

RESULTS

The model was evaluated using two benchmark datasets, i.e., Full Transcript and Mature mRNA. Deep-m5U achieved overall accuracies of 91.47% and 95.86% for the Full Transcript and Mature mRNA datasets with 10-fold cross-validation, and for independent samples, the model attained 92.94% and 95.17% accuracy.

CONCLUSION

Compared to existing models, Deep-m5U showed approximately 5.23% and 3.73% higher accuracy on the training data and 3.95% and 3.26% higher accuracy on independent samples for the Full Transcript and Mature mRNA datasets, respectively. The reliability and effectiveness of Deep-m5U make it a valuable tool for scientists and a potential asset in pharmaceutical design and research.

摘要

背景

RNA 5-甲基尿嘧啶(m5U)修饰在生物过程中起着至关重要的作用,因此准确识别它们是计算生物学的一个关键焦点。本文介绍了 Deep-m5U,这是一种强大的预测器,旨在增强 m5U 修饰的预测。所提出的方法名为 Deep-m5U,它使用混合伪 K-元核苷酸组成(PseKNC)进行序列制定,使用 Shapley Additive exPlanations(SHAP)算法进行判别特征选择,以及使用深度神经网络(DNN)作为分类器。

结果

该模型使用两个基准数据集(即完整转录本和成熟 mRNA)进行了评估。Deep-m5U 在 10 倍交叉验证时对完整转录本和成熟 mRNA 数据集的总体准确率分别为 91.47%和 95.86%,对于独立样本,模型的准确率分别为 92.94%和 95.17%。

结论

与现有模型相比,Deep-m5U 在训练数据上分别提高了约 5.23%和 3.73%,在独立样本上分别提高了 3.95%和 3.26%。Deep-m5U 的可靠性和有效性使其成为科学家的有价值工具,并有可能成为药物设计和研究的资产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f8d/11577875/34bc7a458061/12859_2024_5978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验