Suppr超能文献

利用两种不同设计的聚合植入物进行颅面重建:有限元研究。

Cranial reconstruction utilizing polymeric implants in two different designs: finite element investigation.

机构信息

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

出版信息

BMC Musculoskelet Disord. 2024 Nov 20;25(1):935. doi: 10.1186/s12891-024-08066-w.

Abstract

INTRODUCTION

Impact loads applied to the human head can result in skull fractures or other injuries that require a craniectomy. The removed portion is replaced with biological or synthetic materials using cranioplasty surgery. Titanium has been the material of choice for cranial implants due to its superior properties and biocompatibility; however, its issues have prompted the search for substitute materials (e.g., polymers). The issues are related to the requirement for surface modification, casting, radiologic incompatibility and potential allergy risks. Recently, polymeric materials have been used in many fields as alternatives to titanium.

OBJECTIVE

This research aims to conduct a finite element study to evaluate the skull reconstruction process by using PEEK and carbon fiber reinforced PEEK 30 and 60% in the production of cranial implants as alternatives to conventional titanium implants.

MATERIALS AND METHODS

A three-dimensional model of a defective skull was rehabilitated with a custom-made cranial implant. The implants were stimulated using two designs (plate and mesh), and different polymeric materials (PEEK and carbon fiber reinforced PEEK 30 and 60%) as titanium substitutes, under 2000 N impact force.

RESULTS

The results illustrated that plate implants reduced the stresses on the skull and increased the stresses on brain tissues compared to mesh implants. Titanium, CFR-PEEK 30 & 60% implants (whether mesh or flat) were not prone to fracture, unlike mesh PEEK implants. In addition, CFR-PEEK 60% implants produced the lowest values of stress, strain, and total deformation on the skull and brain compared to titanium implants, unlike PEEK implants. By using the titanium plate implant, the peak tensile and compressive stresses on the skull were 24.99 and 25.88 MPa, respectively. These stresses decreased to 21.6 and 24.24 MPa when using CFR-PEEK 60%, increased to 26.07 and 28.99 MPa with CFR-PEEK 30%, and significantly increased to 41.68 and 87.61 MPa with PEEK. When the titanium mesh implant was used, the peak tensile and compressive stresses on the skull were 29.83 and 33.86 MPa. With CFR-PEEK 60%, these stresses decreased to 27.77 and 30.57 MPa, and with CFR-PEEK 30% and PEEK, the stresses increased to 34.04 and 38.43 MPa, and 44.65 and 125.67 MPa, respectively. For the brain, using the titanium plate implant resulted in peak tensile and compressive stresses of 14.9 and 16.6 Pa. These stresses decreased to 13.7 and 15.2 Pa with CFR-PEEK 60%, and increased to 16.3 and 18.1 Pa, and 73.5 and 80 Pa, with CFR-PEEK 30% and PEEK, respectively. With the titanium mesh implant, the peak tensile and compressive stresses were 12.3 and 13.5 Pa. Using CFR-PEEK 60%, these stresses decreased to 11.2 and 12.4 Pa on the brain, and increased with CFR-PEEK 30% and PEEK to 14.1 and 15.5 Pa, and 53.7 and 62 Pa, respectively. Additionally, the contact area between the PEEK implant (whether mesh or plate design) and the left parietal bone of the skull was expected to be damaged due to excessive strains. Importantly, all implants tested did not exceed permissible limits for tensile and compressive stresses and strains on the brain.

CONCLUSION

It was concluded that carbon fiber-reinforced PEEK implants, with 30% and 60% reinforcements, can be used as alternatives to titanium for cranial reconstruction. The addition of carbon fibers to the PEEK matrix in these percentages enhances the mechanical, chemical, and thermal properties of the implants. Additionally, these composites are characterized by their low weight, biocompatibility, lack of clinical issues, and ease of fabrication. They can also help preserve the skull, protect the brain, and are not susceptible to damage.

CLINICAL SIGNIFICANCE

Overcoming the drawbacks of titanium cranial implants and increasing the effectiveness of the cranioplasty process by utilizing PEEK and carbon fiber reinforced PEEK materials in the reconstruction of the damaged portion of skull.

摘要

简介

作用于头部的冲击载荷可能导致颅骨骨折或其他需要开颅手术的损伤。通过颅骨成形术,用生物或合成材料代替切除的部分。由于钛具有优异的性能和生物相容性,因此一直是颅骨植入物的首选材料;然而,它的问题促使人们寻找替代材料(例如聚合物)。这些问题与表面改性、铸造、放射不兼容性和潜在过敏风险有关。最近,聚合物材料已在许多领域被用作钛的替代品。

目的

本研究旨在通过使用 PEEK 和碳纤维增强 PEEK 30 和 60%进行有限元研究,评估颅骨重建过程,将其作为传统钛植入物的替代品。

材料和方法

使用定制的颅骨植入物对有缺陷的颅骨进行三维模型修复。使用两种设计(板和网)和不同的聚合物材料(PEEK 和碳纤维增强 PEEK 30 和 60%)对植入物进行刺激,模拟 2000N 的冲击力。

结果

结果表明,与网孔植入物相比,板状植入物降低了颅骨的应力并增加了脑组织的应力。与网孔 PEEK 植入物不同,钛、CFR-PEEK 30%和 60%植入物(无论是板状还是网状)都不易断裂。此外,与 PEEK 植入物相比,CFR-PEEK 60%植入物在颅骨和脑组织上产生的应力、应变和总变形值最低。与钛植入物相比,使用钛板植入物时,颅骨上的最大拉伸和压缩应力分别为 24.99MPa 和 25.88MPa。当使用 CFR-PEEK 60%时,这些应力降低到 21.6MPa 和 24.24MPa,当使用 CFR-PEEK 30%时,这些应力增加到 26.07MPa 和 28.99MPa,当使用 PEEK 时,这些应力显著增加到 41.68MPa 和 87.61MPa。当使用钛网植入物时,颅骨上的最大拉伸和压缩应力分别为 29.83MPa 和 33.86MPa。当使用 CFR-PEEK 60%时,这些应力降低到 27.77MPa 和 30.57MPa,当使用 CFR-PEEK 30%和 PEEK 时,这些应力增加到 34.04MPa 和 38.43MPa,以及 44.65MPa 和 125.67MPa。对于大脑,使用钛板植入物会导致最大拉伸和压缩应力分别为 14.9Pa 和 16.6Pa。当使用 CFR-PEEK 60%时,这些应力降低到 13.7Pa 和 15.2Pa,当使用 CFR-PEEK 30%和 PEEK 时,这些应力增加到 16.3Pa 和 18.1Pa,以及 73.5Pa 和 80Pa。使用钛网植入物时,大脑上的最大拉伸和压缩应力分别为 12.3Pa 和 13.5Pa。使用 CFR-PEEK 60%时,这些应力降低到大脑上的 11.2Pa 和 12.4Pa,当使用 CFR-PEEK 30%和 PEEK 时,这些应力增加到 14.1Pa 和 15.5Pa,以及 53.7Pa 和 62Pa。此外,由于应变过大,预计 PEEK 植入物(无论是板状还是网孔设计)与颅骨左顶骨之间的接触区域会受损。重要的是,所有测试的植入物都没有超过大脑拉伸和压缩应力和应变的允许极限。

结论

碳纤维增强 PEEK 植入物(30%和 60%增强)可作为钛的替代品用于颅骨重建。在这些百分比下,向 PEEK 基质中添加碳纤维可增强植入物的机械、化学和热性能。此外,这些复合材料的特点是重量轻、生物相容性好、没有临床问题、易于制造。它们还有助于保护颅骨、保护大脑,并且不易损坏。

临床意义

通过利用 PEEK 和碳纤维增强 PEEK 材料在颅骨受损部分的重建中克服钛颅骨植入物的缺点,并提高颅骨成形术过程的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afbd/11577651/2b44e6f312f2/12891_2024_8066_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验