Suppr超能文献

2型糖尿病的预测建模与药物再利用

Predictive Modeling and Drug Repurposing for Type-II Diabetes.

作者信息

Wankhade Nitin, Sharma Anju, Wani Mushtaq Ahmad, Banerjee Aritra, Garg Prabha

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India.

出版信息

ACS Med Chem Lett. 2024 Oct 2;15(11):1907-1917. doi: 10.1021/acsmedchemlett.4c00358. eCollection 2024 Nov 14.

Abstract

Diabetes mellitus (DM) is a global health concern, and dipeptidyl peptidase-4 (DPP-4) is a key therapeutic target. The study used three machine learning and deep learning models to predict potential DPP-4 inhibitors using a curated data set of 6,750 compounds. The models included support vector machine (SVM), random forest (RF), naive Bayes (NB), and multitask deep neural network (MTDNN). The MTDNN model demonstrated strong predictive performance, achieving 98.62% train accuracy and 98.42% test accuracy for predicting DPP-4 inhibitors and a correlation coefficient of 0.979 for training and 0.977 for the test data set, with low training and test errors while predicting corresponding IC values. The MTDNN model predicted potential inhibitors using an external data set of FDA-approved drugs, identifying 100 compounds. Among these, five compounds stood out with promising molecular docking and dynamic profiles, suggesting their potential as repurposed drugs for targeting DPP-4 and offering hope for the future of diabetes treatment.

摘要

糖尿病(DM)是一个全球性的健康问题,而二肽基肽酶-4(DPP-4)是一个关键的治疗靶点。该研究使用了三种机器学习和深度学习模型,利用一个由6750种化合物组成的精选数据集来预测潜在的DPP-4抑制剂。这些模型包括支持向量机(SVM)、随机森林(RF)、朴素贝叶斯(NB)和多任务深度神经网络(MTDNN)。MTDNN模型表现出强大的预测性能,在预测DPP-4抑制剂时,训练准确率达到98.62%,测试准确率达到98.42%,训练数据集的相关系数为0.979,测试数据集的相关系数为0.977,在预测相应的IC值时训练和测试误差较低。MTDNN模型使用FDA批准药物的外部数据集预测潜在抑制剂,识别出100种化合物。其中,有五种化合物在分子对接和动力学方面表现出色,表明它们作为靶向DPP-4的重新利用药物的潜力,并为糖尿病治疗的未来带来了希望。

相似文献

1
Predictive Modeling and Drug Repurposing for Type-II Diabetes.
ACS Med Chem Lett. 2024 Oct 2;15(11):1907-1917. doi: 10.1021/acsmedchemlett.4c00358. eCollection 2024 Nov 14.

本文引用的文献

2
FGFR1Pred: an artificial intelligence-based model for predicting fibroblast growth factor receptor 1 inhibitor.
Mol Divers. 2024 Aug;28(4):2065-2076. doi: 10.1007/s11030-023-10714-7. Epub 2023 Aug 11.
3
Artificial intelligence in intestinal polyp and colorectal cancer prediction.
Cancer Lett. 2023 Jul 1;565:216238. doi: 10.1016/j.canlet.2023.216238. Epub 2023 May 19.
4
Artificial Intelligence in Drug Design: Are We Still There?
Curr Top Med Chem. 2022;22(30):2483-2492. doi: 10.2174/1568026623666221017143244.
5
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology.
Biomedicines. 2022 Aug 19;10(8):2026. doi: 10.3390/biomedicines10082026.
6
DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy.
Front Neurosci. 2022 May 3;16:858126. doi: 10.3389/fnins.2022.858126. eCollection 2022.
7
Case Report: Neratinib Therapy Improves Glycemic Control in a Patient With Type 2 Diabetes and Breast Cancer.
Front Endocrinol (Lausanne). 2022 Mar 17;13:830097. doi: 10.3389/fendo.2022.830097. eCollection 2022.
8
IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.
Diabetes Res Clin Pract. 2022 Jan;183:109119. doi: 10.1016/j.diabres.2021.109119. Epub 2021 Dec 6.
9
A deep neural network-based approach for prediction of mutagenicity of compounds.
Environ Sci Pollut Res Int. 2021 Sep;28(34):47641-47650. doi: 10.1007/s11356-021-14028-9. Epub 2021 Apr 24.
10
Pathophysiology of Type 2 Diabetes Mellitus.
Int J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/ijms21176275.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验