Suppr超能文献

通过考虑观测相关矩阵的抽样变异性来改进平行分析的应用。

Improving the Use of Parallel Analysis by Accounting for Sampling Variability of the Observed Correlation Matrix.

作者信息

Xia Yan, Zhou Xinchang

机构信息

University of Illinois Urbana-Champaign, USA.

出版信息

Educ Psychol Meas. 2024 Aug 20:00131644241268073. doi: 10.1177/00131644241268073.

Abstract

Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest factors ( = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.

摘要

平行分析被认为是确定因子分析中因子数量最准确的方法之一。与传统的因子保留方法(如凯泽法则)相比,平行分析的一个主要优势在于,它考虑了从单位矩阵获得的特征值的抽样变异性,单位矩阵代表零因子模型的相关矩阵。本研究认为,我们还应考虑从观测数据中获得的特征值的抽样变异性,以便研究结果能让从业者了解随机样本中因子数量的变异性。因此,本研究建议对平行分析进行修正,以提供表明因子数量为0、1、2等的随机样本比例,而不是单一的建议因子数量。模拟结果支持所提出策略的使用,特别是在样本量有限且抽样波动值得关注的研究场景中。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验