Green Samuel B, Thompson Marilyn S, Levy Roy, Lo Wen-Juo
Arizona State University, Tempe, AZ, USA.
University of Arkansas, Fayetteville, AR, USA.
Educ Psychol Meas. 2015 Jun;75(3):428-457. doi: 10.1177/0013164414546566. Epub 2014 Aug 14.
Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the th eigenvalue for sample data to the th eigenvalue for generated data sets, conditioned on - 1 underlying factors. T-PA and R-PA are conceptualized as stepwise hypothesis-testing procedures and, thus, are alternatives to sequential likelihood ratio test (LRT) methods. We assessed the accuracy of T-PA, R-PA, and LRT methods using a Monte Carlo approach. Although no method was uniformly more accurate across all 180 conditions, the PA approaches outperformed LRT methods overall. Relative to T-PA, R-PA tended to perform better within the framework of hypothesis testing and to evidence greater accuracy in conditions with higher factor loadings.
传统平行分析(T-PA)通过将样本特征值与随机生成数据的特征值依次进行比较来估计因子数量。修正平行分析(R-PA)以k - 1个潜在因子为条件,将样本数据的第k个特征值与生成数据集的第k个特征值依次进行比较。T-PA和R-PA被概念化为逐步假设检验程序,因此是顺序似然比检验(LRT)方法的替代方法。我们使用蒙特卡罗方法评估了T-PA、R-PA和LRT方法的准确性。尽管在所有180种条件下没有一种方法始终更准确,但总体而言,PA方法优于LRT方法。相对于T-PA,R-PA在假设检验框架内往往表现更好,并且在因子载荷较高的条件下显示出更高的准确性。