Suppr超能文献

用于确定因子数量的修订平行分析方法的I型和II型错误率及总体准确性。

Type I and Type II Error Rates and Overall Accuracy of the Revised Parallel Analysis Method for Determining the Number of Factors.

作者信息

Green Samuel B, Thompson Marilyn S, Levy Roy, Lo Wen-Juo

机构信息

Arizona State University, Tempe, AZ, USA.

University of Arkansas, Fayetteville, AR, USA.

出版信息

Educ Psychol Meas. 2015 Jun;75(3):428-457. doi: 10.1177/0013164414546566. Epub 2014 Aug 14.

Abstract

Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the th eigenvalue for sample data to the th eigenvalue for generated data sets, conditioned on - 1 underlying factors. T-PA and R-PA are conceptualized as stepwise hypothesis-testing procedures and, thus, are alternatives to sequential likelihood ratio test (LRT) methods. We assessed the accuracy of T-PA, R-PA, and LRT methods using a Monte Carlo approach. Although no method was uniformly more accurate across all 180 conditions, the PA approaches outperformed LRT methods overall. Relative to T-PA, R-PA tended to perform better within the framework of hypothesis testing and to evidence greater accuracy in conditions with higher factor loadings.

摘要

传统平行分析(T-PA)通过将样本特征值与随机生成数据的特征值依次进行比较来估计因子数量。修正平行分析(R-PA)以k - 1个潜在因子为条件,将样本数据的第k个特征值与生成数据集的第k个特征值依次进行比较。T-PA和R-PA被概念化为逐步假设检验程序,因此是顺序似然比检验(LRT)方法的替代方法。我们使用蒙特卡罗方法评估了T-PA、R-PA和LRT方法的准确性。尽管在所有180种条件下没有一种方法始终更准确,但总体而言,PA方法优于LRT方法。相对于T-PA,R-PA在假设检验框架内往往表现更好,并且在因子载荷较高的条件下显示出更高的准确性。

相似文献

10
A new look at Horn's parallel analysis with ordinal variables.探讨有序变量的 Horn 平行分析的新方法。
Psychol Methods. 2013 Dec;18(4):454-74. doi: 10.1037/a0030005. Epub 2012 Oct 8.

引用本文的文献

10
Revised Parallel Analysis With Nonnormal Ability and a Guessing Parameter.具有非正态能力和猜测参数的修正平行分析
Educ Psychol Meas. 2019 Feb;79(1):151-169. doi: 10.1177/0013164418767009. Epub 2018 Apr 1.

本文引用的文献

1
The Scree Test For The Number Of Factors.因子数量的碎石检验
Multivariate Behav Res. 1966 Apr 1;1(2):245-76. doi: 10.1207/s15327906mbr0102_10.
2
Remarks on Parallel Analysis.关于平行分析的评论
Multivariate Behav Res. 1992 Oct 1;27(4):509-40. doi: 10.1207/s15327906mbr2704_2.
3
The Effects of Overextraction on Factor and Component Analysis.过度提取对因子分析和成分分析的影响。
Multivariate Behav Res. 1992 Jul 1;27(3):387-415. doi: 10.1207/s15327906mbr2703_5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验