Suppr超能文献

经皮冠状动脉介入治疗的急性冠状动脉综合征患者基于机器学习的风险分层评分的验证

Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention.

作者信息

Molenaar Mitchel A, Selder Jasper L, Schmidt Amand F, Asselbergs Folkert W, Nieuwendijk Jelle D, van Dalfsen Brigitte, Schuuring Mark J, Bouma Berto J, Chamuleau Steven A J, Verouden Niels J

机构信息

Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.

Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.

出版信息

Eur Heart J Digit Health. 2024 Sep 26;5(6):702-711. doi: 10.1093/ehjdh/ztae071. eCollection 2024 Nov.

Abstract

AIMS

This study aimed to validate the machine learning-based Global Registry of Acute Coronary Events (GRACE) 3.0 score and PRAISE (Prediction of Adverse Events following an Acute Coronary Syndrome) in patients with acute coronary syndrome (ACS) treated with percutaneous coronary intervention (PCI) for predicting mortality.

METHODS AND RESULTS

Data of consecutive patients with ACS treated with PCI in a tertiary centre in the Netherlands between 2014 and 2021 were used for external validation. The GRACE 3.0 score for predicting in-hospital mortality was evaluated in 2759 patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) treated with PCI. The PRAISE score for predicting one-year mortality was evaluated in 4347 patients with ACS treated with PCI. Both risk scores were compared with the GRACE 2.0 score. The GRACE 3.0 score showed excellent discrimination [c-statistic 0.90 (95% CI 0.84, 0.94)] for predicting in-hospital mortality, with well-calibrated predictions (calibration-in-the large [CIL] -0.19 [95% CI -0.45, 0.07]). The PRAISE score demonstrated moderate discrimination [c-statistic 0.75 (95% CI 0.70, 0.80)] and overestimated the one-year risk of mortality [CIL -0.56 (95% CI -0.73, -0.39)]. Decision curve analysis demonstrated that the GRACE 3.0 score offered improved risk prediction compared with the GRACE 2.0 score, while the PRAISE score did not.

CONCLUSION

This study in ACS patients treated with PCI provides suggestive evidence that the GRACE 3.0 score effectively predicts in-hospital mortality beyond the GRACE 2.0 score. The PRAISE score demonstrated limited potential for predicting one-year mortality risk. Further external validation studies in larger cohorts including patients without PCI are warranted.

摘要

目的

本研究旨在验证基于机器学习的全球急性冠状动脉事件注册研究(GRACE)3.0评分和急性冠状动脉综合征不良事件预测(PRAISE)评分在接受经皮冠状动脉介入治疗(PCI)的急性冠状动脉综合征(ACS)患者中预测死亡率的能力。

方法与结果

使用2014年至2021年荷兰一家三级中心连续接受PCI治疗的ACS患者数据进行外部验证。对2759例接受PCI治疗的非ST段抬高型急性冠状动脉综合征(NSTE-ACS)患者评估GRACE 3.0评分预测住院死亡率的情况。对4347例接受PCI治疗的ACS患者评估PRAISE评分预测一年死亡率的情况。将这两个风险评分与GRACE 2.0评分进行比较。GRACE 3.0评分在预测住院死亡率方面显示出出色的区分能力[c统计量0.90(95%CI 0.84,0.94)],预测校准良好(大样本校准[CIL] -0.19 [95%CI -0.45,0.07])。PRAISE评分显示出中等区分能力[c统计量0.75(95%CI 0.70,0.80)],且高估了一年死亡率风险[CIL -0.56(95%CI -0.73,-0.39)]。决策曲线分析表明,与GRACE 2.0评分相比,GRACE 3.0评分提供了更好的风险预测,而PRAISE评分则不然。

结论

这项针对接受PCI治疗的ACS患者的研究提供了提示性证据,表明GRACE 3.0评分比GRACE 2.0评分更有效地预测住院死亡率。PRAISE评分在预测一年死亡率风险方面潜力有限。有必要在包括未接受PCI治疗患者的更大队列中进行进一步的外部验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb8/11570391/61f58176287a/ztae071_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验