Agraz Jose L, Agraz Carlos, Chen Andrew A, Rice Charles, Pozos Robert S, Aelterman Sven, Tan Amanda, Viaene Angela N, Nasrallah MacLean P, Sharma Parth, Grenko Caleb M, Kurc Tahsin, Saltz Joel, Feldman Michael D, Akbari Hamed, Shinohara Russell T, Bakas Spyridon, Wilson Parker
Wilson Laboratory and Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of Pennsylvania Philadelphia PA 19104-4238 USA.
Wilson Laboratory, Perelman School of MedicineUniversity of Pennsylvania Philadelphia PA 19104-4238 USA.
IEEE Open J Eng Med Biol. 2024 Sep 6;6:35-40. doi: 10.1109/OJEMB.2024.3455011. eCollection 2025.
In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases. Building on published graphical method, this research demonstrates a mathematical population or data-driven method that optimizes the dependency on the number of reference WSIs and corresponding aggregate sums, thereby increasing SCN process efficiency. This method expedites the analysis of color convergence 50-fold by using stain vector Euclidean distance analysis, slashing the requirement for reference WSIs by more than half. The approach is validated through a tripartite methodology: 1) Stain vector euclidean distances analysis, 2) Distance computation timing, and 3) Qualitative and quantitative assessments of SCN across cancer tumors regions of interest. The results validate the performance of data-driven SCN method, thus potential to enhance the precision and reliability of computational pathology analyses. This advancement is poised to enhance diagnostic processes, therapeutic strategies, and patient prognosis.
在医学诊断领域,病理学和组织学对于疾病的精确识别至关重要。通过自动化得到增强的数字组织病理学,有助于对日常产生的大量活检图像进行高效分析,简化评估过程。本研究聚焦于全切片图像(WSI)队列中的染色颜色归一化(SCN),旨在减少批次偏差。基于已发表的图形方法,本研究展示了一种数学总体或数据驱动的方法,该方法优化了对参考WSI数量和相应总和的依赖,从而提高了SCN过程的效率。该方法通过使用染色向量欧几里得距离分析,将颜色收敛分析速度提高了50倍,将对参考WSI的需求减少了一半以上。该方法通过三方方法进行验证:1)染色向量欧几里得距离分析,2)距离计算时间,以及3)对癌症肿瘤感兴趣区域的SCN进行定性和定量评估。结果验证了数据驱动的SCN方法的性能,因此有可能提高计算病理学分析的精度和可靠性。这一进展有望改善诊断过程、治疗策略和患者预后。