Suppr超能文献

结构保持的颜色归一化和组织学图像的稀疏染色分离。

Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images.

出版信息

IEEE Trans Med Imaging. 2016 Aug;35(8):1962-71. doi: 10.1109/TMI.2016.2529665. Epub 2016 Apr 27.

Abstract

Staining and scanning of tissue samples for microscopic examination is fraught with undesirable color variations arising from differences in raw materials and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. When comparing tissue samples, color normalization and stain separation of the tissue images can be helpful for both pathologists and software. Techniques that are used for natural images fail to utilize structural properties of stained tissue samples and produce undesirable color distortions. The stain concentration cannot be negative. Tissue samples are stained with only a few stains and most tissue regions are characterized by at most one effective stain. We model these physical phenomena that define the tissue structure by first decomposing images in an unsupervised manner into stain density maps that are sparse and non-negative. For a given image, we combine its stain density maps with stain color basis of a pathologist-preferred target image, thus altering only its color while preserving its structure described by the maps. Stain density correlation with ground truth and preference by pathologists were higher for images normalized using our method when compared to other alternatives. We also propose a computationally faster extension of this technique for large whole-slide images that selects an appropriate patch sample instead of using the entire image to compute the stain color basis.

摘要

组织样本的染色和扫描进行显微镜检查充满了不理想的颜色变化,这些变化源于染色供应商的原材料和制造技术、实验室的染色方案以及数字扫描仪的颜色响应的差异。在比较组织样本时,组织图像的颜色归一化和染色分离对于病理学家和软件都很有帮助。用于自然图像的技术未能利用染色组织样本的结构特性,并且会产生不理想的颜色扭曲。染色浓度不能为负。组织样本仅用少数几种染色剂染色,并且大多数组织区域最多由一种有效的染色剂染色。我们通过首先将图像以无监督的方式分解为稀疏且非负的染色密度图,来对定义组织结构的这些物理现象进行建模。对于给定的图像,我们将其染色密度图与其首选目标图像的病理学家染色颜色基础相结合,从而仅改变其颜色,同时保留由图描述的结构。与其他替代方法相比,使用我们的方法进行归一化的图像的染色密度与地面实况的相关性以及病理学家的偏好更高。我们还提出了一种针对大型全幻灯片图像的计算速度更快的扩展技术,该技术选择适当的补丁样本,而不是使用整个图像来计算染色颜色基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验