Suppr超能文献

注意相关脑网络与知觉相关脑网络之间的不同连接模式可作为阅读障碍的特征:静息态 fMRI 的机器学习应用。

Distinct connectivity patterns between perception and attention-related brain networks characterize dyslexia: Machine learning applied to resting-state fMRI.

机构信息

Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Kennedy Krieger Institute, Baltimore, MD 21205, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

出版信息

Cortex. 2024 Dec;181:216-232. doi: 10.1016/j.cortex.2024.08.012. Epub 2024 Nov 8.

Abstract

Diagnosis of dyslexia often occurs in late schooling years, leading to academic and psychological challenges. Furthermore, diagnosis is time-consuming, costly, and reliant on arbitrary cutoffs. On the other hand, automated algorithms hold great potential in medical and psychological diagnostics. The aim of the present study was to develop a machine learning tool for the detection of dyslexia in children based on the intrinsic connectivity patterns of different brain networks underlying perception and attention. Here, 117 children (8-12 years old; 58 females; 52 typical readers; TR and 65 children with dyslexia) completed cognitive and reading assessments and underwent 10 min of resting-state fMRI. Functional connectivity coefficients between 264 brain regions were used as features for machine learning. Different supervised algorithms were employed for classification of children with and without dyslexia. A classifier trained on dorsal attention network features exhibited the highest performance (accuracy .79, sensitivity .92, specificity .64). Auditory, visual, and fronto-parietal network-based classification showed intermediate accuracy levels (70-75%). These results highlight significant neurobiological differences in brain networks associated with visual attention between TR and children with dyslexia. Distinct neural integration patterns can differentiate dyslexia from typical development, which may be utilized in the future as a biomarker for the presence and/or severity of dyslexia.

摘要

阅读障碍的诊断通常发生在后期的学校教育阶段,导致学术和心理方面的挑战。此外,诊断既耗时、昂贵,又依赖于任意的截止值。另一方面,自动化算法在医学和心理学诊断方面具有巨大的潜力。本研究的目的是开发一种基于感知和注意力相关的不同大脑网络内在连接模式的机器学习工具,用于检测儿童阅读障碍。在这里,117 名儿童(8-12 岁;58 名女性;52 名典型阅读者;TR 和 65 名阅读障碍儿童)完成了认知和阅读评估,并接受了 10 分钟的静息态 fMRI 检查。264 个大脑区域之间的功能连接系数被用作机器学习的特征。使用不同的监督算法对有无阅读障碍的儿童进行分类。基于背侧注意网络特征训练的分类器表现出最高的性能(准确率为 79%,灵敏度为 92%,特异性为 64%)。基于听觉、视觉和额顶网络的分类显示出中等的准确率水平(70-75%)。这些结果突出了 TR 和阅读障碍儿童之间与视觉注意力相关的大脑网络存在显著的神经生物学差异。不同的神经整合模式可以区分阅读障碍和典型发育,这可能在未来被用作阅读障碍存在和/或严重程度的生物标志物。

相似文献

6
Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.
Hum Brain Mapp. 2016 Apr;37(4):1443-58. doi: 10.1002/hbm.23112. Epub 2016 Jan 20.
8
Data-driven exploratory method investigation on the effect of dyslexia education at brain connectivity in Turkish children: a preliminary study.
Brain Struct Funct. 2024 Sep;229(7):1697-1712. doi: 10.1007/s00429-024-02820-5. Epub 2024 Jul 13.
10
Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.
Brain Topogr. 2025 Jan 9;38(2):21. doi: 10.1007/s10548-024-01095-7.

本文引用的文献

1
Deep learning classification of reading disability with regional brain volume features.
Neuroimage. 2023 Jun;273:120075. doi: 10.1016/j.neuroimage.2023.120075. Epub 2023 Apr 11.
2
Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data.
PLoS One. 2022 May 24;17(5):e0265300. doi: 10.1371/journal.pone.0265300. eCollection 2022.
3
Executive functions in Chinese kindergarten children with early reading problems.
Dyslexia. 2022 Aug;28(3):325-341. doi: 10.1002/dys.1714. Epub 2022 May 18.
4
Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study.
Hum Brain Mapp. 2022 Aug 15;43(12):3792-3808. doi: 10.1002/hbm.25884. Epub 2022 Apr 27.
5
Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study.
Neurosci Biobehav Rev. 2022 Jun;137:104650. doi: 10.1016/j.neubiorev.2022.104650. Epub 2022 Mar 31.
6
Neural sampling of the speech signal at different timescales by children with dyslexia.
Neuroimage. 2022 Jun;253:119077. doi: 10.1016/j.neuroimage.2022.119077. Epub 2022 Mar 9.
7
Reduced Theta Sampling in Infants at Risk for Dyslexia across the Sensitive Period of Native Phoneme Learning.
Int J Environ Res Public Health. 2022 Jan 21;19(3):1180. doi: 10.3390/ijerph19031180.
9
How Learning to Read Changes the Listening Brain.
Front Psychol. 2021 Dec 20;12:726882. doi: 10.3389/fpsyg.2021.726882. eCollection 2021.
10
The role of visual attention in dyslexia: Behavioral and neurobiological evidence.
Hum Brain Mapp. 2022 Apr 1;43(5):1720-1737. doi: 10.1002/hbm.25753. Epub 2022 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验