Suppr超能文献

基于静息态 fMRI 数据的精神分裂症检测的特征级和决策级融合。

Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data.

机构信息

Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt.

出版信息

PLoS One. 2022 May 24;17(5):e0265300. doi: 10.1371/journal.pone.0265300. eCollection 2022.

Abstract

Mental disorders, especially schizophrenia, still pose a great challenge for diagnosis in early stages. Recently, computer-aided diagnosis techniques based on resting-state functional magnetic resonance imaging (Rs-fMRI) have been developed to tackle this challenge. In this work, we investigate different decision-level and feature-level fusion schemes for discriminating between schizophrenic and normal subjects. Four types of fMRI features are investigated, namely the regional homogeneity, voxel-mirrored homotopic connectivity, fractional amplitude of low-frequency fluctuations and amplitude of low-frequency fluctuations. Data denoising and preprocessing were first applied, followed by the feature extraction module. Four different feature selection algorithms were applied, and the best discriminative features were selected using the algorithm of feature selection via concave minimization (FSV). Support vector machine classifiers were trained and tested on the COBRE dataset formed of 70 schizophrenic subjects and 70 healthy subjects. The decision-level fusion method outperformed the single-feature-type approaches and achieved a 97.85% accuracy, a 98.33% sensitivity, a 96.83% specificity. Moreover, feature-fusion scheme resulted in a 98.57% accuracy, a 99.71% sensitivity, a 97.66% specificity, and an area under the ROC curve of 0.9984. In general, decision-level and feature-level fusion schemes boosted the performance of schizophrenia detectors based on fMRI features.

摘要

精神障碍,尤其是精神分裂症,在早期诊断方面仍然是一个巨大的挑战。最近,基于静息态功能磁共振成像(Rs-fMRI)的计算机辅助诊断技术已经被开发出来,以应对这一挑战。在这项工作中,我们研究了不同的决策级和特征级融合方案,以区分精神分裂症患者和正常受试者。研究了四种 fMRI 特征,即局部一致性、体素镜像同伦连接、低频波动分数幅度和低频波动幅度。首先应用数据去噪和预处理,然后进行特征提取模块。应用了四种不同的特征选择算法,并使用通过凹度最小化的特征选择算法(FSV)选择最佳的区分特征。在由 70 名精神分裂症患者和 70 名健康受试者组成的 COBRE 数据集上,使用支持向量机分类器进行训练和测试。决策级融合方法优于单特征类型方法,准确率为 97.85%,灵敏度为 98.33%,特异性为 96.83%。此外,特征融合方案的准确率为 98.57%,灵敏度为 99.71%,特异性为 97.66%,ROC 曲线下面积为 0.9984。总的来说,决策级和特征级融合方案提高了基于 fMRI 特征的精神分裂症检测的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/9129055/a6817d029f19/pone.0265300.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验