Zhu Wenkai, Monnie Christina M, Kitoka Kristīne, Gronenborn Angela M
Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA-15261, United States.
Laboratory of Structural Biology and Drug Design, Latvian Institute of Organic Synthesis, Riga, LV1006, Latvia.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419709. doi: 10.1002/anie.202419709. Epub 2024 Dec 4.
Fluorine-19 NMR spectroscopy has emerged as a powerful tool for studying protein structure, dynamics, and interactions. Of particular interest is the exploitation of trifluoromethyl (tfm) groups, given their high sensitivity and superior transverse relaxation properties, compared to single fluorine atoms. However, biosynthetic incorporation of tfm-bearing amino acids remains challenging due to cytotoxicity and incompatibility with natural tRNA synthetases. Here, we report on overcoming this challenge using cell-free synthesis, incorporating trifluoromethyl-methionine (tfmM) into the protein Cyclophilin A (CypA) with remarkably high efficiency, impossible via biosynthetic means. Importantly, we demonstrate that tfmM CypA binds a native substrate, the N-terminal domain of HIV-1 capsid protein (HIV-1 CA-NTD), and retains peptidyl prolyl cis/trans isomerase activity. It also binds the peptide inhibitor Cyclosporine A (CsA) with the same affinity as non-labeled, wild-type CypA. Furthermore, we show that F isotope shifts and F solvent paramagnetic relaxation enhancements (PREs) provide valuable structural information on surface exposure. Taken together, our study illustrates that tfmM can be readily incorporated into proteins at very high levels by cell-free synthesis without disturbing protein structure and function, significantly expanding the scope of F NMR spectroscopy for studying protein structure and dynamics.
氟-19核磁共振波谱已成为研究蛋白质结构、动力学和相互作用的有力工具。特别令人感兴趣的是三氟甲基(tfm)基团的应用,因为与单个氟原子相比,它们具有高灵敏度和卓越的横向弛豫特性。然而,由于细胞毒性以及与天然tRNA合成酶不兼容,含tfm的氨基酸的生物合成掺入仍然具有挑战性。在此,我们报告了通过无细胞合成克服这一挑战的方法,以极高的效率将三氟甲基甲硫氨酸(tfmM)掺入蛋白质亲环素A(CypA)中,而这通过生物合成手段是不可能实现的。重要的是,我们证明tfmM CypA结合天然底物——HIV-1衣壳蛋白的N端结构域(HIV-1 CA-NTD),并保留肽基脯氨酰顺/反异构酶活性。它还以与未标记的野生型CypA相同的亲和力结合肽抑制剂环孢素A(CsA)。此外,我们表明F同位素位移和F溶剂顺磁弛豫增强(PREs)提供了关于表面暴露的有价值的结构信息。综上所述,我们的研究表明,通过无细胞合成,tfmM可以很容易地以非常高的水平掺入蛋白质中,而不会干扰蛋白质的结构和功能,这显著扩展了用于研究蛋白质结构和动力学的F核磁共振波谱的范围。