Suppr超能文献

用于预测肝细胞癌早期复发的自监督多模态特征融合

Self-supervised multi-modal feature fusion for predicting early recurrence of hepatocellular carcinoma.

作者信息

Wang Sen, Zhao Ying, Li Jiayi, Yi Zongmin, Li Jun, Zuo Can, Yao Yu, Liu Ailian

机构信息

Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.

Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.

出版信息

Comput Med Imaging Graph. 2024 Dec;118:102457. doi: 10.1016/j.compmedimag.2024.102457. Epub 2024 Nov 14.

Abstract

Surgical resection stands as the primary treatment option for early-stage hepatocellular carcinoma (HCC) patients. Postoperative early recurrence (ER) is a significant factor contributing to the mortality of HCC patients. Therefore, accurately predicting the risk of ER after curative resection is crucial for clinical decision-making and improving patient prognosis. This study leverages a self-supervised multi-modal feature fusion approach, combining multi-phase MRI and clinical features, to predict ER of HCC. Specifically, we utilized attention mechanisms to suppress redundant features, enabling efficient extraction and fusion of multi-phase features. Through self-supervised learning (SSL), we pretrained an encoder on our dataset to extract more generalizable feature representations. Finally, we achieved effective multi-modal information fusion via attention modules. To enhance explainability, we employed Score-CAM to visualize the key regions influencing the model's predictions. We evaluated the effectiveness of the proposed method on our dataset and found that predictions based on multi-phase feature fusion outperformed those based on single-phase features. Additionally, predictions based on multi-modal feature fusion were superior to those based on single-modal features.

摘要

手术切除是早期肝细胞癌(HCC)患者的主要治疗选择。术后早期复发(ER)是导致HCC患者死亡的一个重要因素。因此,准确预测根治性切除术后的ER风险对于临床决策和改善患者预后至关重要。本研究采用一种自监督多模态特征融合方法,结合多期MRI和临床特征,来预测HCC的ER。具体而言,我们利用注意力机制抑制冗余特征,实现多期特征的高效提取和融合。通过自监督学习(SSL),我们在我们的数据集上预训练了一个编码器,以提取更具泛化性的特征表示。最后,我们通过注意力模块实现了有效的多模态信息融合。为了提高可解释性,我们采用Score-CAM来可视化影响模型预测的关键区域。我们在我们的数据集上评估了所提出方法的有效性,发现基于多期特征融合的预测优于基于单期特征的预测。此外,基于多模态特征融合的预测优于基于单模态特征的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验