Wang Sen, Zhao Ying, Li Jiayi, Yi Zongmin, Li Jun, Zuo Can, Yao Yu, Liu Ailian
Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.
Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.
Comput Med Imaging Graph. 2024 Dec;118:102457. doi: 10.1016/j.compmedimag.2024.102457. Epub 2024 Nov 14.
Surgical resection stands as the primary treatment option for early-stage hepatocellular carcinoma (HCC) patients. Postoperative early recurrence (ER) is a significant factor contributing to the mortality of HCC patients. Therefore, accurately predicting the risk of ER after curative resection is crucial for clinical decision-making and improving patient prognosis. This study leverages a self-supervised multi-modal feature fusion approach, combining multi-phase MRI and clinical features, to predict ER of HCC. Specifically, we utilized attention mechanisms to suppress redundant features, enabling efficient extraction and fusion of multi-phase features. Through self-supervised learning (SSL), we pretrained an encoder on our dataset to extract more generalizable feature representations. Finally, we achieved effective multi-modal information fusion via attention modules. To enhance explainability, we employed Score-CAM to visualize the key regions influencing the model's predictions. We evaluated the effectiveness of the proposed method on our dataset and found that predictions based on multi-phase feature fusion outperformed those based on single-phase features. Additionally, predictions based on multi-modal feature fusion were superior to those based on single-modal features.
手术切除是早期肝细胞癌(HCC)患者的主要治疗选择。术后早期复发(ER)是导致HCC患者死亡的一个重要因素。因此,准确预测根治性切除术后的ER风险对于临床决策和改善患者预后至关重要。本研究采用一种自监督多模态特征融合方法,结合多期MRI和临床特征,来预测HCC的ER。具体而言,我们利用注意力机制抑制冗余特征,实现多期特征的高效提取和融合。通过自监督学习(SSL),我们在我们的数据集上预训练了一个编码器,以提取更具泛化性的特征表示。最后,我们通过注意力模块实现了有效的多模态信息融合。为了提高可解释性,我们采用Score-CAM来可视化影响模型预测的关键区域。我们在我们的数据集上评估了所提出方法的有效性,发现基于多期特征融合的预测优于基于单期特征的预测。此外,基于多模态特征融合的预测优于基于单模态特征的预测。