Exai Bio Inc., Palo Alto, CA, US.
Weill Cornell Medicine, New York, NY, US.
Nat Commun. 2024 Nov 21;15(1):10090. doi: 10.1038/s41467-024-53851-9.
Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%-98%) at 87% (95% CI: 81%-93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than ~ 30%.
液体活检有可能通过非侵入性的肿瘤早期检测来改变癌症治疗方式。开发一种稳健的液体活检测试需要从大量不同异质性患者群体的血液样本中收集高维数据。我们提出变分自动编码器的生成能力能够学习基于血液的生物标志物的稳健且可推广的特征。在这项研究中,我们分析了来自 1050 名被诊断患有非小细胞肺癌(NSCLC)的个体的血清样本中的孤儿非编码 RNA(oncRNA),以及性别、年龄和 BMI 匹配的对照。我们证明了我们的多任务生成式 AI 模型 Orion 在整体性能和对保留数据集的泛化能力方面均超过了常用方法。Orion 在所有阶段的癌症检测中达到了 94%(95%CI:87%-98%)的整体敏感性和 87%(95%CI:81%-93%)的特异性,在保留验证数据集上的敏感性超过其他方法 30%以上。
Int J Cancer. 2019-1-28
J Pharm Biomed Anal. 2020-6-5
J Egypt Natl Canc Inst. 2024-6-17
Oncotarget. 2016-10-11
Cancer Res Commun. 2024-12-1
J Transl Med. 2025-8-28
Signal Transduct Target Ther. 2025-6-15
Int J Mol Sci. 2025-5-23
Mol Cancer. 2025-6-2
Lipids Health Dis. 2025-5-21
Nature. 2025-5
Life (Basel). 2025-3-19