Suppr超能文献

使用无细胞癌源性RNA生物标志物和人工智能检测早期结直肠癌

Detection of Early-Stage Colorectal Cancer Using Cell-Free oncRNA Biomarkers and Artificial Intelligence.

作者信息

Momen-Roknabadi Amir, Karimzadeh Mehran, Chen Nae-Chyun, Cavazos Taylor B, Wang Jieyang, Ku Jeremy, Degtiar Alex, Krishnan Akshaya, Hernandez Martha, Gebala Magdalena, Huang Alice, Chen Selina, Nguyen Dang, Lam Ti, Hanna Rose, Fish Lisa, Smith Alexx J, Sekhon Sukh, Yen Jennifer, Gregg Jeff, Li Helen, Hormozdiari Fereydoun, Behsaz Babak, Hartwig Anna, Goodarzi Hani, Schwartzberg Lee, Alipanahi Babak

机构信息

Exai Bio, Palo Alto, California.

University of Nevada School of Medicine, Reno, Nevada.

出版信息

Clin Cancer Res. 2025 Aug 1;31(15):3229-3238. doi: 10.1158/1078-0432.CCR-25-0449.

Abstract

PURPOSE

Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and early detection significantly improves treatment outcomes, but existing blood-based tests often have limited sensitivity in early-stage disease. We developed a blood-based test combining orphan noncoding RNAs (oncRNA), a group of small cell-free RNAs, with generative artificial intelligence to detect colorectal cancer.

EXPERIMENTAL DESIGN

We leveraged a cohort of 613 colorectal cancer cases and controls to train a model that demonstrated both high clinical performance and minimal technical variability in robustness testing. We further validated our model in an independent, single-source cohort of 192 colorectal cancer cases and controls. Model performance was assessed by sensitivity, specificity, and area under the ROC curve, with attention to early-stage detection.

RESULTS

In our independent validation set, we achieved an overall sensitivity of 89% at 90% specificity, with an 80% sensitivity for stage I-an important milestone, as early-stage colorectal cancer detection remains a challenge for other blood-based technologies. Performance was consistent across demographic subgroups.

CONCLUSIONS

Our oncRNA-based blood test, powered by artificial intelligence, offers strong performance for early colorectal cancer detection, including in stage I disease for which existing blood-based assays are limited. These findings support further development toward a minimally invasive colorectal cancer screening tool.

摘要

目的

结直肠癌是全球癌症相关死亡的第二大主要原因,早期检测可显著改善治疗结果,但现有的血液检测在疾病早期阶段的敏感性往往有限。我们开发了一种基于血液的检测方法,将孤儿非编码RNA(oncRNA,一组小的无细胞RNA)与生成式人工智能相结合,以检测结直肠癌。

实验设计

我们利用一个包含613例结直肠癌病例和对照的队列来训练一个模型,该模型在稳健性测试中表现出高临床性能和最小的技术变异性。我们在一个由192例结直肠癌病例和对照组成的独立单源队列中进一步验证了我们的模型。通过敏感性、特异性和ROC曲线下面积评估模型性能,并关注早期检测。

结果

在我们的独立验证集中,我们在特异性为90%时实现了89%的总体敏感性,I期的敏感性为80%——这是一个重要的里程碑,因为早期结直肠癌检测对其他基于血液的技术来说仍然是一个挑战。在各人口亚组中性能一致。

结论

我们基于oncRNA的血液检测在人工智能的支持下,在早期结直肠癌检测方面表现出色,包括在现有基于血液的检测方法有限的I期疾病中。这些发现支持进一步开发一种微创结直肠癌筛查工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验