Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) & University Medical Center Utrecht, Utrecht, the Netherlands.
Oncode Institute, Utrecht, the Netherlands.
Nat Commun. 2024 Nov 21;15(1):9918. doi: 10.1038/s41467-024-54159-4.
Accurate repair of DNA damage is critical for maintenance of genomic integrity and cellular viability. Because damage occurs non-uniformly across the genome, single-cell resolution is required for proper interrogation, but sensitive detection has remained challenging. Here, we present a comprehensive analysis of repair protein localization in single human cells using DamID and ChIC sequencing techniques. This study reports genome-wide binding profiles in response to DNA double-strand breaks induced by AsiSI, and explores variability in genomic damage locations and associated repair features in the context of spatial genome organization. By unbiasedly detecting repair factor localization, we find that repair proteins often occupy entire topologically associating domains, mimicking variability in chromatin loop anchoring. Moreover, we demonstrate the formation of multi-way chromatin hubs in response to DNA damage. Notably, larger hubs show increased coordination of repair protein binding, suggesting a preference for cooperative repair mechanisms. Together, our work offers insights into the heterogeneous processes underlying genome stability in single cells.
准确修复 DNA 损伤对于维持基因组完整性和细胞活力至关重要。由于损伤在整个基因组中不均匀发生,因此需要单细胞分辨率进行适当的检测,但敏感检测仍然具有挑战性。在这里,我们使用 DamID 和 ChIC 测序技术对单个人类细胞中的修复蛋白定位进行了全面分析。本研究报告了针对 AsiSI 诱导的 DNA 双链断裂的全基因组结合谱,并探讨了在空间基因组组织背景下基因组损伤位置和相关修复特征的可变性。通过无偏地检测修复因子定位,我们发现修复蛋白通常占据整个拓扑关联结构域,模拟了染色质环锚定的可变性。此外,我们还证明了在 DNA 损伤后形成了多向染色质中心。值得注意的是,较大的中心显示出修复蛋白结合的协调性增加,表明对协同修复机制的偏好。总之,我们的工作为单个细胞中基因组稳定性的异质过程提供了新的见解。