Suppr超能文献

SPRITE:一种使用组合式拆分与混合条形码技术在细胞核中绘制高阶三维相互作用图谱的全基因组方法。

SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding.

作者信息

Quinodoz Sofia A, Bhat Prashant, Chovanec Peter, Jachowicz Joanna W, Ollikainen Noah, Detmar Elizabeth, Soehalim Elizabeth, Guttman Mitchell

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.

出版信息

Nat Protoc. 2022 Jan;17(1):36-75. doi: 10.1038/s41596-021-00633-y. Epub 2022 Jan 10.

Abstract

A fundamental question in gene regulation is how cell-type-specific gene expression is influenced by the packaging of DNA within the nucleus of each cell. We recently developed Split-Pool Recognition of Interactions by Tag Extension (SPRITE), which enables mapping of higher-order interactions within the nucleus. SPRITE works by cross-linking interacting DNA, RNA and protein molecules and then mapping DNA-DNA spatial arrangements through an iterative split-and-pool barcoding method. All DNA molecules within a cross-linked complex are barcoded by repeatedly splitting complexes across a 96-well plate, ligating molecules with a unique tag sequence, and pooling all complexes into a single well before repeating the tagging. Because all molecules in a cross-linked complex are covalently attached, they will sort together throughout each round of split-and-pool and will obtain the same series of SPRITE tags, which we refer to as a barcode. The DNA fragments and their associated barcodes are sequenced, and all reads sharing identical barcodes are matched to reconstruct interactions. SPRITE accurately maps pairwise DNA interactions within the nucleus and measures higher-order spatial contacts occurring among up to thousands of simultaneously interacting molecules. Here, we provide a detailed protocol for the experimental steps of SPRITE, including a video ( https://youtu.be/6SdWkBxQGlg ). Furthermore, we provide an automated computational pipeline available on GitHub that allows experimenters to seamlessly generate SPRITE interaction matrices starting with raw fastq files. The protocol takes ~5 d from cell cross-linking to high-throughput sequencing for the experimental steps and 1 d for data processing.

摘要

基因调控中的一个基本问题是,每个细胞细胞核内DNA的包装如何影响细胞类型特异性基因表达。我们最近开发了通过标签扩展进行相互作用的分裂池识别(SPRITE)技术,该技术能够绘制细胞核内的高阶相互作用图谱。SPRITE的工作原理是交联相互作用的DNA、RNA和蛋白质分子,然后通过一种迭代的分裂池条形码方法绘制DNA-DNA空间排列。交联复合物中的所有DNA分子通过在96孔板上反复分裂复合物、用独特的标签序列连接分子并在重复标记之前将所有复合物汇集到单个孔中进行条形码标记。由于交联复合物中的所有分子都是共价连接的,它们在每一轮分裂池过程中都会一起分类,并将获得相同系列的SPRITE标签,我们将其称为条形码。对DNA片段及其相关条形码进行测序,并匹配所有共享相同条形码的读数以重建相互作用。SPRITE能够准确绘制细胞核内的成对DNA相互作用,并测量多达数千个同时相互作用分子之间发生的高阶空间接触。在这里,我们提供了SPRITE实验步骤的详细方案,包括一个视频(https://youtu.be/6SdWkBxQGlg)。此外,我们在GitHub上提供了一个自动化计算流程,使实验人员能够从原始fastq文件开始无缝生成SPRITE相互作用矩阵。从细胞交联到高通量测序,实验步骤的方案大约需要5天,数据处理需要1天。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验