Tan Qiyang, Chang Haiwei, Liang Guofang, Luzin Vladimir, Yin Yu, Wang Fanshuo, Cheng Xing, Yan Ming, Zhu Qiang, Hutchinson Christopher, Zhang Ming-Xing
School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia.
Australian Nuclear Science and Technology Organization (ANSTO), Sydney, NSW, Australia.
Nat Commun. 2024 Nov 21;15(1):10077. doi: 10.1038/s41467-024-54507-4.
Over the last century, improvement in mechanical performance of structural metals has primarily been achieved by creating more and more complex chemical compositions. Such compositional complexity raises costs, creates supply vulnerability, and complicates recycling. As a relatively new metal processing technique, metal 3D-printing provides a possibility to revisit and simplify alloy compositions, achieving alloy plainification, which enables simpler materials to be used versatilely. Here, we demonstrate that high performance simple plain carbon steels can be produced through 3D-printing. Our 3D-printed plain carbon steels achieve tensile and impact properties comparable, or even superior to those of ultra-high strength alloy steels such as Maraging steels. The sequential micro-scale melting and solidification intrinsic to 3D-printing provides sufficient cooling to directly form martensite and/or bainite, strengthening the steels while maintaining microstructural and property homogeneity without dimensional limitations or heat treatment distortion and cracking. By manipulating 3D-printing parameters, we can tailor the microstructure, thereby control the properties for customized applications. This offers a scalable approach to reduce alloy complexity without compromising mechanical performance and highlights the opportunities for the 3D-printing to help drive alloy plainification.
在过去的一个世纪里,结构金属机械性能的提升主要是通过制造越来越复杂的化学成分来实现的。这种成分复杂性增加了成本,造成了供应脆弱性,并使回收变得复杂。作为一种相对较新的金属加工技术,金属3D打印提供了重新审视和简化合金成分的可能性,实现合金成分简化,从而使更简单的材料能够得到广泛应用。在此,我们证明了通过3D打印可以生产出高性能的简单碳素钢。我们3D打印的碳素钢的拉伸性能和冲击性能与马氏体时效钢等超高强度合金钢相当,甚至更优。3D打印固有的顺序微尺度熔化和凝固过程提供了足够的冷却,可直接形成马氏体和/或贝氏体,在增强钢材强度的同时,保持微观结构和性能的均匀性,且不受尺寸限制,也不会出现热处理变形和开裂问题。通过操控3D打印参数,我们可以定制微观结构,从而为定制应用控制性能。这提供了一种可扩展的方法来降低合金复杂性,同时不影响机械性能,并突出了3D打印在推动合金成分简化方面的机遇。