Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.
Nat Mater. 2021 Dec;20(12):1629-1634. doi: 10.1038/s41563-021-01050-y. Epub 2021 Jul 8.
The antagonism between strength and resistance to hydrogen embrittlement in metallic materials is an intrinsic obstacle to the design of lightweight yet reliable structural components operated in hydrogen-containing environments. Economical and scalable microstructural solutions to this challenge must be found. Here, we introduce a counterintuitive strategy to exploit the typically undesired chemical heterogeneity within the material's microstructure that enables local enhancement of crack resistance and local hydrogen trapping. We use this approach in a manganese-containing high-strength steel and produce a high dispersion of manganese-rich zones within the microstructure. These solute-rich buffer regions allow for local micro-tuning of the phase stability, arresting hydrogen-induced microcracks and thus interrupting the percolation of hydrogen-assisted damage. This results in a superior hydrogen embrittlement resistance (better by a factor of two) without sacrificing the material's strength and ductility. The strategy of exploiting chemical heterogeneities, rather than avoiding them, broadens the horizon for microstructure engineering via advanced thermomechanical processing.
金属材料的强度与抗氢脆之间的矛盾,是设计在含氢环境中运行的轻量可靠结构组件的固有障碍。必须找到经济且可扩展的微观结构解决方案来应对这一挑战。在这里,我们引入了一种反直觉的策略,利用材料微观结构中通常不希望出现的化学不均匀性,从而实现抗裂性的局部增强和局部氢捕获。我们在含锰高强度钢中采用了这种方法,并在微观结构中产生了高分散的富锰区。这些溶质富缓冲区允许局部微调相稳定性,阻止氢致微裂纹的扩展,从而中断氢辅助损伤的渗透。这在不牺牲材料强度和延展性的情况下,显著提高了抗氢脆性能(提高了两倍)。通过先进的热机械处理来利用化学不均匀性,而不是避免它们,拓宽了通过微观结构工程来提高性能的视野。