Suppr超能文献

利用改进的适宜性函数优化安宁河流域耕地适宜性评价

Optimizing arable land suitability evaluation using improved suitability functions in the Anning River Basin.

作者信息

Luo Fang, He Li, Chen Zhongsheng, He Zhengwei, Bai Wenqian, Zhao Yang, Cen Yuxin

机构信息

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.

College of Geography and Planning, Chengdu University of Technology, Chengdu, 610059, China.

出版信息

Sci Rep. 2024 Nov 21;14(1):28886. doi: 10.1038/s41598-024-80302-8.

Abstract

Conducting arable land suitability evaluation (ALSE) is essential for identifying agricultural development opportunities and ensuring sustainable production and food security. Traditional ALSE methods, relying on suitability proportion functions, often encounter constraints due to land use structures. Therefore, it is necessary to develop new function methods to avoid the constraints imposed by land use structures, thus making ALSE more convenient. This study aims to propose a novel set of rules for constructing proportion functions, aiming to enhance the applicability of suitability functions in arable land suitability evaluation. The study findings reveal that: (1) In the Anning River Basin, the highly Suitable, Moderately Suitable, and Marginally Suitable current arable land (CAL) respectively account for 45.3%, 29.8%, and 18.9% of the arable land (AL). The proportion of areas deemed Temporarily Unsuitable and Permanently Unsuitable is only 6%. The distribution of suitability levels for the potential arable land (PAL) is relatively uniform, with a proportion of suitable areas reaching 66.1%, indicating substantial development potential. (2) The agricultural production conditions in the arid and warm river valley area of the Anning River Basin are exceptional. Highly Suitable CAL and Highly Suitable PAL cover 93.14% and 82.97% of this region, respectively, making it a focal point for regional agricultural development. (3) The spatial distribution patterns of ALSE results based on the original function and the improved function are essentially consistent. However, there are significant differences among the suitability levels. The correlation analysis results indicate that the evaluation results based on the improved function are closer to reality. This study enhanced the accuracy of ALSE results based on the suitability function. It provided a new approach for evaluating the suitability of AL and offers a beneficial reference for regional arable land resource utilization and sustainable agricultural development.

摘要

开展耕地适宜性评价对于识别农业发展机遇、确保可持续生产和粮食安全至关重要。传统的耕地适宜性评价方法依赖适宜性比例函数,常因土地利用结构而受到限制。因此,有必要开发新的函数方法以避免土地利用结构带来的限制,从而使耕地适宜性评价更加便捷。本研究旨在提出一套构建比例函数的新规则,以提高适宜性函数在耕地适宜性评价中的适用性。研究结果表明:(1)在安宁河流域,当前高度适宜、中度适宜和勉强适宜的耕地分别占耕地总面积的45.3%、29.8%和18.9%。暂时不适宜和永久不适宜区域的比例仅为6%。潜在耕地适宜性水平的分布相对均匀,适宜区域比例达到66.1%,表明具有较大的开发潜力。(2)安宁河流域干旱温暖河谷地区的农业生产条件优越。高度适宜的当前耕地和高度适宜的潜在耕地分别占该区域的93.14%和82.97%,使其成为区域农业发展的重点。(3)基于原始函数和改进函数的耕地适宜性评价结果的空间分布格局基本一致。然而,适宜性水平之间存在显著差异。相关性分析结果表明,基于改进函数的评价结果更接近实际情况。本研究提高了基于适宜性函数的耕地适宜性评价结果的准确性。它为耕地适宜性评价提供了一种新方法,并为区域耕地资源利用和可持续农业发展提供了有益参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32c9/11582588/f00010368898/41598_2024_80302_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验