Hu Shuai, Ma Xiao-Yu, Ma Yong, Li Ren-Pu, Liu Hai-Tao, Akbar Jehan, Chen Qian-Bin, Chen Qin, Zhou Tian-Chi, Zhang Yaxin
Opt Express. 2024 Sep 9;32(19):32821-32835. doi: 10.1364/OE.529260.
The development and application of terahertz (THz) waves hold great potential in military, industrial, and biomedical fields. Terahertz time-domain spectroscopy (THz-TDS) imaging systems capture a sample's time-domain spectral signal to achieve imaging through spectral analysis for intensity and phase information. Challenges in terahertz imaging include spatial diffraction limits, poor image contrast and clarity due to atmospheric water molecule absorption, and Gaussian and impulse noise. This study utilizes a generative adversarial network structure in deep learning models to enhance THz image quality by providing improved denoising and resolution. Through the integration of certain encoder and decoder concepts and introduction of pyramid pooling residual dense block module for feature fusion extraction on low-resolution images, a super-resolution network is designed and employed on selected THz images of deformed metal. Multiple standards are introduced for algorithm performance evaluation. Our experimental results demonstrate that compared with bicubic, super-resolution generative adversarial networks (SRGAN), and residual dense network (RDN) algorithms, our algorithm effectively improves image resolution, and removes noise while preserving high-frequency details without introducing unnecessary high-frequency artifacts.
太赫兹(THz)波的发展与应用在军事、工业和生物医学领域具有巨大潜力。太赫兹时域光谱(THz-TDS)成像系统捕获样本的时域光谱信号,通过对强度和相位信息进行光谱分析来实现成像。太赫兹成像面临的挑战包括空间衍射极限、由于大气水分子吸收导致的图像对比度和清晰度较差,以及高斯噪声和脉冲噪声。本研究在深度学习模型中利用生成对抗网络结构,通过改进去噪和分辨率来提高太赫兹图像质量。通过整合特定的编码器和解码器概念,并引入金字塔池化残差密集块模块对低分辨率图像进行特征融合提取,设计了一种超分辨率网络,并将其应用于选定的变形金属太赫兹图像。引入了多种标准进行算法性能评估。我们的实验结果表明,与双立方算法、超分辨率生成对抗网络(SRGAN)和残差密集网络(RDN)算法相比,我们的算法有效提高了图像分辨率,去除了噪声,同时保留了高频细节,且未引入不必要的高频伪像。