Suppr超能文献

STEDNet:基于 Swin Transformer 的编解码网络,用于降低低剂量 CT 中的噪声。

STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.

机构信息

Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China.

School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China.

出版信息

Med Phys. 2023 Jul;50(7):4443-4458. doi: 10.1002/mp.16249. Epub 2023 Feb 9.

Abstract

BACKGROUND

Low-dose computed tomography (LDCT) can reduce the dose of X-ray radiation, making it increasingly significant for routine clinical diagnosis and treatment planning. However, the noise introduced by low-dose X-ray exposure degrades the quality of CT images, affecting the accuracy of clinical diagnosis. Purpose The noises, artifacts, and high-frequency components are similarly distributed in LDCT images. Transformer can capture global context information in an attentional manner to create distant dependencies on targets and extract more powerful features. In this paper, we reduce the impact of image errors on the ability to retain detailed information and improve the noise suppression performance by fully mining the distribution characteristics of image information.

METHODS

This paper proposed an LDCT noise and artifact suppressing network based on Swin Transformer. The network includes a noise extraction sub-network and a noise removal sub-network. The noise extraction and removal capability are improved using a coarse extraction network of high-frequency features based on full convolution. The noise removal sub-network improves the network's ability to extract relevant image features by using a Swin Transformer with a shift window as an encoder-decoder and skip connections for global feature fusion. Also, the perceptual field is extended by extracting multi-scale features of the images to recover the spatial resolution of the feature maps. The network uses a loss constraint with a combination of L1 and MS-SSIM to improve and ensure the stability and denoising effect of the network.

RESULTS

The denoising ability and clinical applicability of the methods were tested using clinical datasets. Compared with DnCNN, RED-CNN, CBDNet and TSCN, the STEDNet method shows a better denoising effect on RMSE and PSNR. The STEDNet method effectively removes image noise and preserves the image structure to the maximum extent, making the reconstructed image closest to the NDCT image. The subjective and objective analysis of several sets of experiments shows that the method in this paper can effectively maintain the structure, edges, and textures of the denoised images while having good noise suppression performance. In the real data evaluation, the RMSE of this method is reduced by 18.82%, 15.15%, 2.25%, and 1.10% on average compared with DnCNN, RED-CNN, CBDNet, and TSCNN, respectively. The average improvement of PSNR is 9.53%, 7.33%, 2.65%, and 3.69%, respectively.

CONCLUSIONS

This paper proposed a LDCT image denoising algorithm based on end-to-end training. The method in this paper can effectively improve the diagnostic performance of CT images by constraining the details of the images and restoring the LDCT image structure. The problem of increased noise and artifacts in CT images can be solved while maintaining the integrity of CT image tissue structure and pathological information. Compared with other algorithms, this method has better denoising effects both quantitatively and qualitatively.

摘要

背景

低剂量计算机断层扫描(LDCT)可以降低 X 射线辐射剂量,使其在常规临床诊断和治疗计划中越来越重要。然而,低剂量 X 射线照射引入的噪声会降低 CT 图像的质量,影响临床诊断的准确性。

目的

LDCT 图像中的噪声、伪影和高频分量具有相似的分布。Transformer 可以以注意力的方式捕获全局上下文信息,从而在目标上创建远距离的依赖关系,并提取更强大的特征。在本文中,我们通过充分挖掘图像信息的分布特征,降低图像误差对保留详细信息能力的影响,提高噪声抑制性能。

方法

本文提出了一种基于 Swin Transformer 的 LDCT 噪声和伪影抑制网络。该网络包括噪声提取子网络和噪声去除子网络。通过基于全卷积的高频特征粗提取网络,提高噪声提取和去除能力。噪声去除子网络通过使用具有移位窗口的 Swin Transformer 作为编码器-解码器,并进行全局特征融合的跳连接,提高了网络提取相关图像特征的能力。此外,通过提取图像的多尺度特征来扩展感知域,以恢复特征图的空间分辨率。该网络使用 L1 和 MS-SSIM 组合的损失约束来提高和保证网络的稳定性和去噪效果。

结果

使用临床数据集测试了该方法的去噪能力和临床适用性。与 DnCNN、RED-CNN、CBDNet 和 TSCN 相比,STEDNet 方法在 RMSE 和 PSNR 上表现出更好的去噪效果。STEDNet 方法能够最大限度地去除图像噪声并保留图像结构,使重建图像最接近 NDCT 图像。几组实验的主观和客观分析表明,本文方法可以在有效抑制噪声的同时,很好地保持去噪图像的结构、边缘和纹理。在真实数据评估中,与 DnCNN、RED-CNN、CBDNet 和 TSCNN 相比,该方法的 RMSE 分别平均降低了 18.82%、15.15%、2.25%和 1.10%。PSNR 的平均提高分别为 9.53%、7.33%、2.65%和 3.69%。

结论

本文提出了一种基于端到端训练的 LDCT 图像去噪算法。该方法可以通过约束图像细节和恢复 LDCT 图像结构,有效提高 CT 图像的诊断性能。该方法可以解决 CT 图像中噪声和伪影增加的问题,同时保持 CT 图像组织结构和病理信息的完整性。与其他算法相比,该方法在定量和定性方面都具有更好的去噪效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验