Suppr超能文献

基于深度学习的调幅共线全息数据存储中的抗噪声性能分析

Anti-noise performance analysis in amplitude-modulated collinear holographic data storage using deep learning.

作者信息

Lin Yongkun, Ke Shenghui, Song Haiyang, Liu Hongjie, Yang Rupeng, Lin Dakui, Li Xiong, Zheng Jihong, Cao Qiang, Hao Jianying, Lin Xiao, Tan Xiaodi

出版信息

Opt Express. 2024 Aug 12;32(17):29666-29677. doi: 10.1364/OE.532825.

Abstract

In an amplitude-modulated collinear holographic data storage system, optical system aberration and experimental noise due to the recording medium often result in a high bit error rate (BER) and low signal-to-noise ratio (SNR) in directly read detector data. This study proposes an anti-noise performance analysis using deep learning. End-to-end convolutional neural networks were employed to analyze noise resistance in encoded data pages captured by the detector. Experimental results demonstrate that these networks effectively correct system imaging aberrations, detector light intensity response, holographic storage medium response non-uniformity, and defocusing noise from the recording objective lens. Consequently, the BER of reconstructed encoded data pages can be reduced to 1/10 of that from direct detection, while the SNR can be increased more than fivefold, enhancing the accuracy and reliability of data reading in amplitude holographic data storage systems.

摘要

在振幅调制共线全息数据存储系统中,光学系统像差以及记录介质产生的实验噪声,常常导致直接读取探测器数据时出现高误码率(BER)和低信噪比(SNR)。本研究提出一种利用深度学习的抗噪声性能分析方法。采用端到端卷积神经网络来分析探测器捕获的编码数据页面中的抗噪声能力。实验结果表明,这些网络能有效校正系统成像像差、探测器光强响应、全息存储介质响应不均匀性以及记录物镜的离焦噪声。因此,重建编码数据页面的误码率可降至直接检测时的1/10,而信噪比可提高五倍以上,增强了振幅全息数据存储系统中数据读取的准确性和可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验