Suppr超能文献

基于具有数据不确定性的多阶段极限学习机的光学混沌预测

Prediction of optical chaos using a multi-stage extreme learning machine with data uncertainty.

作者信息

Gao Dawei, Ma Chen, Fan Yuanlong, Wang Yangyundou, Shao Xiaopeng

出版信息

Opt Express. 2024 Nov 4;32(23):40820-40829. doi: 10.1364/OE.534975.

Abstract

In this paper, we study the problem of predicting optical chaos for semiconductor lasers, where data uncertainty can severely degrade the performance of chaos prediction. We hereby propose a multi-stage extreme learning machine (MSELM) based approach for the continuous prediction of optical chaos, which handles data uncertainty effectively. Rather than relying on pilot signals for conventional reservoir learning, the proposed approach enables the use of predicted optical intensity as virtual training samples for the MSELM model learning, which leads to enhanced prediction performance and low overhead. To address the data uncertainty in virtual training, total least square (TLS) is employed for the update of the proposed MSELM's parameters with simple updating rule and low complexity. Simulation results demonstrate that the proposed MSELM can execute the continuous optical chaos predictions effectively. The chaotic time series can be continuously predicted for a time period in excess of 4 ns with a normalized mean squared error (NMSE) lower than 0.012. It also demands much fewer training samples than state-of-the-art learning-based methods. In addition, the simulation results show that with the help of TLS, the length of prediction is improved significantly as the uncertainty is handled properly. Finally, we verify the prediction ability of the multi-stage ELM under various laser parameters, and make the median boxplot of the predicted results, which shows that the proposed MSELM continues to produce accurate and continuous predictions on time-varying optical chaos.

摘要

在本文中,我们研究了半导体激光器光学混沌预测问题,其中数据不确定性会严重降低混沌预测的性能。我们在此提出一种基于多阶段极限学习机(MSELM)的方法用于光学混沌的连续预测,该方法能有效处理数据不确定性。与传统储能器学习依赖导频信号不同,所提方法能够将预测的光强用作MSELM模型学习的虚拟训练样本,这导致预测性能增强且开销较低。为解决虚拟训练中的数据不确定性问题,采用总体最小二乘法(TLS)以简单的更新规则和低复杂度来更新所提MSELM的参数。仿真结果表明,所提MSELM能够有效地执行连续光学混沌预测。对于混沌时间序列,能够在超过4 ns的时间段内进行连续预测,归一化均方误差(NMSE)低于0.012。与基于学习的现有方法相比,它所需的训练样本也少得多。此外,仿真结果表明,在TLS的帮助下,由于不确定性得到妥善处理,预测长度得到显著提高。最后,我们验证了多阶段极限学习机在各种激光参数下的预测能力,并制作了预测结果的中位数箱线图,结果表明所提MSELM能够对时变光学混沌持续产生准确且连续的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验