Suppr超能文献

恒星光谱的BP神经网络PID控制仿真方法研究

Research on the simulation method of a BP neural network PID control for stellar spectrum.

作者信息

Yun Zhikun, Zhang Yu, Liu Qiang, Ren Taiyang, Zhao Bin, Xu Da, Yang Songzhou, Ren Dianwu, Yang Junjie, Mo Xiaoxu, Zhang Jian, Zhang GuoYu

出版信息

Opt Express. 2024 Oct 21;32(22):38879-38895. doi: 10.1364/OE.536964.

Abstract

This study investigated the multiple correlations among spectral simulation units based on digital micromirror device (DMD) spectral simulation, which leads to the problem that conventional spectral simulation methods such as PID control exhibit a low fitting accuracy or long fitting time in the spectral simulation of various targets. In this paper, a method of stellar spectrum simulation based on back propagation neural network-based PID (BP-PID) control is proposed to achieve high efficiency and high precision simulation of various spectral targets. The topology of the BP neural network was constructed based on the spectral modulation model of a DMD stellar spectrum simulation system, and the algorithm of the BP-PID control was designed. Finally, an experimental platform was built to verify the performance and spectral simulation accuracy of the BP-PID control algorithm. The results show that the overshoot and response time of the BP-PID control algorithm decreased by 79.01% and 30%, respectively compared with those of the PID control algorithm. The maximum spectral simulation accuracies of 2000K, 7000K, and 12000K color temperature increased by a factor of 2.311, 1.871, and 2.254, respectively, and the standard deviations of the spectral simulation error decreased by 56%, 41%, and 54%, respectively. In the range of 2000-12000K color temperature, the spectral simulation error of the BP-PID control algorithm is better than ±3.495%, and the standard deviation of the spectral simulation error is between 1.8255 and 2.2358. The proposed method can improve the spectral simulation accuracy and simulation efficiency of a star simulator, reduce the magnitude and spectrum calibration errors caused by the differential response, improve the star feature recognition accuracy of the orbiting star sensor, and hence, provide a theoretical and technical basis for the development of high-precision star sensors.

摘要

本研究基于数字微镜器件(DMD)光谱模拟,对光谱模拟单元之间的多重相关性进行了研究,这导致了诸如PID控制等传统光谱模拟方法在各种目标光谱模拟中存在拟合精度低或拟合时间长的问题。本文提出了一种基于反向传播神经网络的PID(BP - PID)控制的恒星光谱模拟方法,以实现对各种光谱目标的高效高精度模拟。基于DMD恒星光谱模拟系统的光谱调制模型构建了BP神经网络的拓扑结构,并设计了BP - PID控制算法。最后搭建了实验平台,验证了BP - PID控制算法的性能和光谱模拟精度。结果表明,与PID控制算法相比,BP - PID控制算法的超调量和响应时间分别降低了79.01%和30%。2000K、7000K和12000K色温下的最大光谱模拟精度分别提高了2.311倍、1.871倍和2.254倍,光谱模拟误差的标准差分别降低了56%、41%和54%。在2000 - 12000K色温范围内,BP - PID控制算法的光谱模拟误差优于±3.495%,光谱模拟误差的标准差在1.8255至2.2358之间。该方法可提高星模拟器的光谱模拟精度和模拟效率,减小由差分响应引起的幅度和光谱校准误差,提高在轨星敏感器的星特征识别精度,从而为高精度星敏感器的发展提供理论和技术基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验