Peukes Julia, Dmitrieff Serge, Nédélec François J, Briggs John A G
Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; California Institute for Quantitative Biology (QB3), University of California, Berkeley, Berkeley, California.
Institut Jacques Monod, Université Paris Cité, Paris, France.
Biophys J. 2025 Jan 7;124(1):134-144. doi: 10.1016/j.bpj.2024.11.016. Epub 2024 Nov 20.
Influenza A virus particles assemble at the plasma membrane of infected cells. During assembly all components of the virus come together in a coordinated manner to deform the membrane into a protrusion eventually forming a new, membrane-enveloped virus. Here, we integrate recent molecular insights of this process, particularly concerning the structure of the matrix protein 1 (M1), within a theoretical framework describing the mechanics of virus assembly. Our model describes M1 polymerization and membrane protrusion formation, explaining why it is efficient for M1 to form long strands assembling into helices in filamentous virions. Eventually, we find how the architecture of M1 helices is controlled by physical properties of viral proteins and the host cell membrane. Finally, by considering the growth force and speed of viral filaments, we propose that the helical geometry of M1 strands might have evolved to optimize for fast and efficient virus assembly and growth.
甲型流感病毒颗粒在受感染细胞的质膜处组装。在组装过程中,病毒的所有组件以协调的方式聚集在一起,使膜变形形成一个突起,最终形成一个新的、被膜包裹的病毒。在这里,我们将这一过程的最新分子见解,特别是关于基质蛋白1(M1)的结构,整合到一个描述病毒组装机制的理论框架中。我们的模型描述了M1聚合和膜突起形成,解释了为什么M1形成长链并组装成丝状病毒体中的螺旋结构是高效的。最终,我们发现M1螺旋结构是如何由病毒蛋白和宿主细胞膜的物理性质控制的。最后,通过考虑病毒丝的生长力和速度,我们提出M1链的螺旋几何结构可能已经进化以优化快速有效的病毒组装和生长。