Suppr超能文献

建立模型以探究系统发育和体型对宿主内病原体复制和免疫反应的影响。

Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response.

机构信息

Mathematical Institute, University of Oxford, Oxford, Oxfordshire, UK

Los Alamos National Laboratory, Los Alamos, NM, USA.

出版信息

J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0479.

Abstract

Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially other zoonotic diseases. The major contribution of this work is a computational framework for infectious disease modelling at the within-host level that leverages data from multiple species. This is likely to be of interest to modellers of infectious diseases that jump species barriers and infect multiple species. Our method can be used to computationally determine the competency of a host to infect mosquitoes that will sustain WNV and other zoonotic diseases. We find that smaller passerine species are more competent in spreading the disease than larger non-passerine species. This suggests the role of host phylogeny as an important determinant of within-host pathogen replication. Ultimately, we view our work as an important step in linking within-host viral dynamics models to between-host models that determine spread of infectious disease between different hosts.

摘要

了解病原体的复制速度以及免疫系统的反应速度对于预测新兴病原体的流行传播至关重要。宿主的体型大小通过与其代谢率相关联,理论上被预测会影响病原体的复制速度和免疫系统的反应速度。在这里,我们使用来自多种鸟类感染泛化病原体(西尼罗河病毒;WNV)的病毒时间过程的数学模型,更深入地测试疾病进展和免疫反应如何依赖于质量和宿主系统发育。我们使用层次贝叶斯模型与疾病动态的非线性动力模型相结合,将宿主系统发育的层次结构纳入其中。我们的分析表明,宿主系统发育和物种质量在确定病毒传播的重要因素方面都起着重要作用,例如基本繁殖数、WNV 产生率、血液中的峰值病毒血症以及宿主感染蚊子的能力。我们的模型基于有原则的分析,并对关键流行病学决定因素及其如何随物种质量和系统发育而变化进行了定量预测。这导致了关于导致某些分类群具有更高病毒血症的机制的新假设。例如,我们的模型表明,更高的病毒爆发大小导致鸦科鸟类具有更高水平的病毒血症,并且较大物种的细胞病毒产生率较低。我们得出了一种衡量宿主感染疾病媒介的能力的指标,从而在宿主之间维持疾病。这表明,与较大的非雀形目物种相比,较小的雀形目物种非常有能力传播疾病。我们的模型为为什么某些物种(较小的雀形目物种)是病原体的储存库,而某些物种(较大的非雀形目物种)可能是 WNV 的死胡同宿主提供了机制上的见解。我们的技术深入了解了体型大小和宿主系统发育在 WNV 及其他人畜共患病传播中的作用。这项工作的主要贡献是在宿主内水平上为传染病建模提供了一个计算框架,该框架利用了来自多个物种的数据。这可能对跨越物种障碍并感染多种物种的传染病模型制作者感兴趣。我们的方法可用于计算确定宿主感染蚊子的能力,这些蚊子将维持 WNV 和其他人畜共患病。我们发现,较小的雀形目物种比较大的非雀形目物种更有能力传播疾病。这表明宿主系统发育是决定宿主内病原体复制的重要因素之一。最终,我们认为我们的工作是将宿主内病毒动力学模型与确定不同宿主之间传染病传播的宿主间模型联系起来的重要一步。

相似文献

4
Community views on mass drug administration for soil-transmitted helminths: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2025 Jun 20;6:CD015794. doi: 10.1002/14651858.CD015794.pub2.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
8
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.
Eur J Cancer. 2007 Jan;43(2):258-70. doi: 10.1016/j.ejca.2006.10.014. Epub 2006 Dec 19.
9
The 2 Sigma Genus Concept in mammalogy: Lessons from Lasiurus.
PLoS One. 2025 Jun 25;20(6):e0325554. doi: 10.1371/journal.pone.0325554. eCollection 2025.

引用本文的文献

1
The Promise of a Pointillist Perspective for Comparative Immunology.
Physiology (Bethesda). 2024 Nov 1;39(6):0. doi: 10.1152/physiol.00012.2024. Epub 2024 May 29.
2
Mammal assemblage composition predicts global patterns in emerging infectious disease risk.
Glob Chang Biol. 2021 Oct;27(20):4995-5007. doi: 10.1111/gcb.15784. Epub 2021 Jul 22.
3
Large-scale disease patterns explained by climatic seasonality and host traits.
Oecologia. 2020 Dec;194(4):723-733. doi: 10.1007/s00442-020-04782-x. Epub 2020 Oct 24.
4
The impacts of body mass on immune cell concentrations in birds.
Proc Biol Sci. 2020 Sep 9;287(1934):20200655. doi: 10.1098/rspb.2020.0655.
5
Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal-human interface.
Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20190296. doi: 10.1098/rstb.2019.0296. Epub 2019 Aug 12.
6
Mathematical modeling of within-host Zika virus dynamics.
Immunol Rev. 2018 Sep;285(1):81-96. doi: 10.1111/imr.12687.

本文引用的文献

1
Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8847-8852. doi: 10.1073/pnas.1704011114. Epub 2017 Aug 1.
2
Host and viral traits predict zoonotic spillover from mammals.
Nature. 2017 Jun 29;546(7660):646-650. doi: 10.1038/nature22975. Epub 2017 Jun 21.
3
Zika viral dynamics and shedding in rhesus and cynomolgus macaques.
Nat Med. 2016 Dec;22(12):1448-1455. doi: 10.1038/nm.4206. Epub 2016 Oct 3.
4
EPIDEMIOLOGY. Countering the Zika epidemic in Latin America.
Science. 2016 Jul 22;353(6297):353-4. doi: 10.1126/science.aag0219. Epub 2016 Jul 14.
5
Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance.
PLoS Comput Biol. 2016 May 23;12(5):e1004951. doi: 10.1371/journal.pcbi.1004951. eCollection 2016 May.
6
Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection.
J R Soc Interface. 2016 Apr;13(117). doi: 10.1098/rsif.2016.0130. Epub 2016 Apr 13.
7
Beyond Ebola: lessons to mitigate future pandemics.
Lancet Glob Health. 2015 Jul;3(7):e354-5. doi: 10.1016/S2214-109X(15)00068-6.
8
Of mice, macaques and men: scaling of virus dynamics and immune responses.
Front Microbiol. 2015 Apr 23;6:355. doi: 10.3389/fmicb.2015.00355. eCollection 2015.
9
Within-host viral dynamics of dengue serotype 1 infection.
J R Soc Interface. 2014 Jul 6;11(96). doi: 10.1098/rsif.2014.0094.
10
Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):9072-7. doi: 10.1073/pnas.1303395110. Epub 2013 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验