Suppr超能文献

转录组学结合生理分析和代谢组学揭示了氮对马铃薯块茎形成的响应。

Transcriptomics combined with physiological analysis and metabolomics revealed the response of potato tuber formation to nitrogen.

机构信息

Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China.

Potato Biology and Genetics Key Laboratory of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Qiqihar, China.

出版信息

BMC Plant Biol. 2024 Nov 22;24(1):1109. doi: 10.1186/s12870-024-05758-2.

Abstract

The absorption of the essential element nitrogen by plants affects various aspects of plant physiological activity, including gene expression, metabolite content and growth. However, the molecular mechanism underlying the potato tuberization response to nitrogen remains unclear. Potato plants were subjected to pot experiments under nitrogen deficiency, normal nitrogen levels and nitrogen sufficiency. A comprehensive analysis of the physiological responses, transcriptomic profiles, and metabolic pathways of potato stolons subjected to nitrogen stress was conducted. Transcriptomic analysis revealed 2756 differentially expressed genes (DEGs) associated with nitrogen stress. Metabolomic analysis identified a total of 600 differentially accumulated metabolites (DAMs). Further correlation analysis of the major DEGs and DAMs revealed that 9 key DEGs were associated with alpha-linolenic acid metabolism, 16 key DEGs with starch and sucrose metabolism, 7 key DEGs with nitrogen metabolism, and 16 key DEGs with ABC transporters. Nitrogen deficiency significantly increased the sucrose, GDP-glucose and L-glutamic acid levels and promoted stolon growth by increasing the expression of AMY (alpha-amylase), BE (1,4-alpha-glucan branching enzyme), SS (starch synthase), SPS (sucrose‒phosphate synthase) and AGPS (glucose‒1-phosphate adenylyltransferase). However, high nitrogen levels had the opposite effect. In addition, high nitrogen levels upregulated EG (endoglucanase), SUS (sucrose synthase) and GDH (glutamate dehydrogenase) and led to significant accumulation of 9-Hydroperoxy-10,12,15-octadecatrienoate (9(S)-HpOTrE), (13 S)-Hydroperoxyoctadeca-9,11,15-trienoate (13 (S)-HpOTrE) and L-glutamine, ultimately affecting the balance between plant growth and defense. Overall, our comprehensive study revealed the co-expressed genes and potential pathways related to potato tuber formation under different nitrogen conditions. These data provide a better understanding needed for improving potato tuber traits at the molecular and metabolic levels.

摘要

植物对必需元素氮的吸收会影响植物生理活动的各个方面,包括基因表达、代谢物含量和生长。然而,氮胁迫下块茎形成的分子机制尚不清楚。在缺氮、正常氮和氮充足的条件下,对马铃薯块茎进行盆栽实验。对氮胁迫下马铃薯块茎的生理响应、转录组谱和代谢途径进行了全面分析。转录组分析显示,有 2756 个与氮胁迫相关的差异表达基因(DEGs)。代谢组分析共鉴定出 600 个差异积累代谢物(DAMs)。进一步对主要 DEGs 和 DAMs 的相关性分析表明,9 个关键 DEGs 与α-亚麻酸代谢有关,16 个关键 DEGs 与淀粉和蔗糖代谢有关,7 个关键 DEGs 与氮代谢有关,16 个关键 DEGs 与 ABC 转运蛋白有关。氮缺乏显著增加了蔗糖、GDP-葡萄糖和 L-谷氨酸的水平,并通过增加 AMY(α-淀粉酶)、BE(1,4-α-葡聚糖分支酶)、SS(淀粉合酶)、SPS(蔗糖磷酸合酶)和 AGPS(葡萄糖-1-磷酸腺苷酰转移酶)的表达来促进块茎生长。然而,高氮水平则产生相反的效果。此外,高氮水平上调了 EG(内切葡聚糖酶)、SUS(蔗糖合酶)和 GDH(谷氨酸脱氢酶),导致 9-羟基-10,12,15-十八碳三烯酸(9(S)-HpOTrE)、(13S)-羟基十八碳-9,11,15-三烯酸(13(S)-HpOTrE)和 L-谷氨酰胺的显著积累,最终影响植物生长和防御之间的平衡。总的来说,我们的综合研究揭示了不同氮条件下与马铃薯块茎形成相关的共表达基因和潜在途径。这些数据为在分子和代谢水平上改善马铃薯块茎特性提供了更好的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e19/11583798/802d5c0114f9/12870_2024_5758_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验