Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
Cuu Long Delta Rice Research Institute, Tan Thanh Commune, Can Tho City, Thoi Lai District, 94700, Vietnam.
BMC Plant Biol. 2024 Nov 21;24(1):1107. doi: 10.1186/s12870-024-05697-y.
The cultivation of maize (Zea mays L.), one of the most important crops worldwide for food, feed, biofuels, and industrial applications, faces significant constraints due to Fusarium verticillioides, a fungus responsible for severe diseases including seedling blights, stalk rot, and ear rot. Its impact is worsened by the fact that chemical and agronomic measures used to control the infection are often inefficient. Hence, genetic resistance is considered the most reliable resource to reduce the damage. This study aims to elucidate the genetic basis of F. verticillioides resistance in maize.
Young seedlings of eight divergent maize lines, founders of the MAGIC population, were artificially inoculated with a F. verticillioides strain. Phenotypic analysis and transcriptome sequencing of both control and treated samples identified several hundred differentially expressed genes enriched in metabolic processes associated with terpene synthesis. A WGCNA further refined the pool of genes with potential implications in disease response and found a limited set of hub genes, encoding bZIP and MYB transcription factors, or involved in carbohydrate metabolism, solute transport processes, calcium signaling, and lipid pathways. Finally, additional gene resources were provided by combining transcriptomic data with previous QTL mapping, thereby shedding light on the molecular mechanisms in the maize-F. verticillioides interaction.
The transcriptome profiling of eight divergent MAGIC maize founder lines with contrasting levels of Fusarium verticillioides resistance combined with phenotypic analysis, clarifies the molecular mechanisms underlying the maize-F. verticillioides interaction.
玉米(Zea mays L.)是全球最重要的作物之一,广泛用于食品、饲料、生物燃料和工业应用。然而,玉米受到一种名为尖孢镰刀菌(Fusarium verticillioides)的真菌的严重威胁,该真菌会导致幼苗枯萎病、茎腐病和穗腐病等严重疾病。由于用于控制感染的化学和农业措施往往效率低下,这种真菌的影响更加严重。因此,遗传抗性被认为是减少损害的最可靠资源。本研究旨在阐明玉米对尖孢镰刀菌抗性的遗传基础。
利用人工接种的方法,对 MAGIC 群体的 8 个不同玉米品系的幼苗进行接种处理,对对照和处理样本进行表型分析和转录组测序,鉴定出数百个与萜烯合成相关的代谢过程中差异表达的基因。WGCNA 进一步细化了与疾病反应相关的潜在基因池,并发现了一组有限的枢纽基因,包括 bZIP 和 MYB 转录因子,或涉及碳水化合物代谢、溶质转运过程、钙信号转导和脂质途径。最后,通过将转录组数据与之前的 QTL 作图相结合,提供了额外的基因资源,从而阐明了玉米-尖孢镰刀菌互作中的分子机制。
通过对具有不同尖孢镰刀菌抗性水平的 8 个不同 MAGIC 玉米品系进行转录组分析,并结合表型分析,阐明了玉米-尖孢镰刀菌相互作用的分子机制。