Suppr超能文献

转录组学和代谢组学分析揭示了苯丙氨酸代谢在玉米响应 引起的茎腐病中的作用。

Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by .

机构信息

Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

出版信息

Int J Mol Sci. 2024 Jan 25;25(3):1492. doi: 10.3390/ijms25031492.

Abstract

Stalk rot is a prevalent disease of maize ( L.) that severely affects maize yield and quality worldwide. The ascomycete fungus spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of during the maize stalk infection that causes maize stalk rot has rarely been reported. In this study, we investigated the response of maize to infestation by analyzing the phenotypic, transcriptomic, and metabolomic data of inbred lines ZC17 (resistant) and CH72 (susceptible) with different levels of resistance to stalk rot. Physiological and phenotypic results showed that the infection CH72 was significantly more severe than ZC17 after inoculation. Transcriptome analysis showed that after inoculation, the number of differentially expressed genes (DEGs) was higher in CH72 than in ZC17. Nearly half of these DEGs showed the same expression trend in the two inbred lines. Functional annotation and enrichment analyses indicated that the major pathways enriched for DEGs and DEMs included the biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant-pathogen interactions. The comprehensive analysis of transcriptome and metabolome data indicated that phenylalanine metabolism and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways played a crucial role in maize resistance to infection. In addition, a transcription factor (TF) analysis of the DEGs showed that several TF families, including MYB, bHLH, NAC, and WRKY, were significantly activated after inoculation, suggesting that these TFs play important roles in the molecular regulatory network of maize disease resistance. The findings of this study provide valuable insights into the molecular basis of the response of maize to infection and highlight the importance of combining multiple approaches, such as phenotyping, transcriptomics, and metabolomics, to gain a comprehensive understanding of plant-pathogen interactions.

摘要

茎腐病是一种普遍发生于玉米(L.)的病害,严重影响了全球玉米的产量和品质。子囊菌真菌 spp. 是引起玉米茎腐病的最常见病原体。目前,关于 在引起玉米茎腐病的玉米茎感染过程中的分子机制很少有报道。在这项研究中,我们通过分析对茎腐病具有不同抗性水平的自交系 ZC17(抗性)和 CH72(感病)的表型、转录组和代谢组数据,研究了玉米对 侵染的反应。生理和表型结果表明,接种后 CH72 的感染明显比 ZC17 严重。转录组分析表明,接种后,CH72 中的差异表达基因(DEGs)数量高于 ZC17。这些 DEGs 中有近一半在两个自交系中表现出相同的表达趋势。功能注释和富集分析表明,DEGs 和 DEMs 富集的主要途径包括植物次生代谢物的生物合成、苯丙氨酸代谢、植物激素的生物合成和植物-病原体相互作用。转录组和代谢组数据的综合分析表明,苯丙氨酸代谢和苯丙氨酸、酪氨酸和色氨酸生物合成途径在玉米对 感染的抗性中起关键作用。此外,对 DEGs 的转录因子(TF)分析表明,接种后几个 TF 家族,包括 MYB、bHLH、NAC 和 WRKY,被显著激活,表明这些 TF 在玉米抗病的分子调控网络中发挥重要作用。本研究的结果为玉米对 感染的反应的分子基础提供了有价值的见解,并强调了结合表型、转录组学和代谢组学等多种方法来全面了解植物-病原体相互作用的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3648/10855574/bbc79ab0e667/ijms-25-01492-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验