Suppr超能文献

退行性颈椎脊髓病患者手术预后相关的脑内及脑间连接异常:一项静息态功能磁共振成像研究

Intra- and inter-network connectivity abnormalities associated with surgical outcomes in degenerative cervical myelopathy patients: a resting-state fMRI study.

作者信息

Ge Yuqi, Song Jiajun, Zhao Rui, Guo Xing, Chu Xu, Zhou Jiaming, Xue Yuan

机构信息

Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.

Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'An, China.

出版信息

Front Neurol. 2024 Nov 6;15:1490763. doi: 10.3389/fneur.2024.1490763. eCollection 2024.

Abstract

Resting-state functional MRI (fMRI) has revealed functional changes at the cortical level in degenerative cervical myelopathy (DCM) patients. The aim of this study was to systematically integrate static and dynamic functional connectivity (FC) to unveil abnormalities of functional networks of DCM patients and to analyze the prognostic value of these abnormalities for patients using resting-state fMRI. In this study, we collected clinical data and fMRI data from 44 DCM patients and 39 healthy controls (HC). Independent component analysis (ICA) was performed to investigate the group differences of intra-network FC. Subsequently, both static and dynamic FC were calculated to investigate the inter-network FC alterations in DCM patients. k-means clustering was conducted to assess temporal properties for comparison between groups. Finally, the support vector machine (SVM) approach was performed to predict the prognosis of DCM patients based on static FC, dynamic FC, and fusion of these two metrics. Relative to HC, DCM patients exhibited lower intra-network FC and higher inter-network FC. DCM patients spent more time than HC in the state in which both patients and HC were characterized by strong inter-network FC. Both static and dynamic FC could successfully classify DCM patients with different surgical outcomes. The classification accuracy further improved after fusing the dynamic and static FC for model training. In conclusion, our findings provide valuable insights into the brain mechanisms underlying DCM neuropathology on the network level.

摘要

静息态功能磁共振成像(fMRI)已揭示了退行性颈椎病(DCM)患者皮质水平的功能变化。本研究的目的是系统整合静态和动态功能连接(FC),以揭示DCM患者功能网络的异常,并使用静息态fMRI分析这些异常对患者的预后价值。在本研究中,我们收集了44例DCM患者和39名健康对照(HC)的临床数据和fMRI数据。进行独立成分分析(ICA)以研究网络内FC的组间差异。随后,计算静态和动态FC以研究DCM患者的网络间FC改变。进行k均值聚类以评估时间特性用于组间比较。最后,基于静态FC、动态FC以及这两个指标的融合,采用支持向量机(SVM)方法预测DCM患者的预后。相对于HC,DCM患者表现出较低的网络内FC和较高的网络间FC。DCM患者在患者和HC均具有强网络间FC特征的状态下花费的时间比HC更多。静态和动态FC均可成功区分具有不同手术结果的DCM患者。将动态和静态FC融合用于模型训练后,分类准确率进一步提高。总之,我们的研究结果为网络水平上DCM神经病理学的脑机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e9/11580013/41b1d6cf3c18/fneur-15-1490763-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验