Suppr超能文献

中心蛋白-Sfi1的鱼网样网格驱动巨细胞的超快速钙激活收缩。

Fishnet mesh of centrin-Sfi1 drives ultrafast calcium-activated contraction of the giant cell .

作者信息

Lannan Joseph, Floyd Carlos, Xu L X, Yan Connie, Marshall Wallace F, Vaikuntanathan Surirayanarayanan, Dinner Aaron R, Honts Jerry E, Bhamla Saad, Elting Mary Williard

机构信息

Physics, North Carolina State University.

Chemistry, University of Chicago.

出版信息

bioRxiv. 2024 Nov 8:2024.11.07.622534. doi: 10.1101/2024.11.07.622534.

Abstract

is a unicellular ciliate capable of contracting to a quarter of its body length in less than five milliseconds. When measured as fractional shortening, this is an order of magnitude faster than motion powered by actomyosin. Myonemes, which are protein networks found near the cortex of many protists, are believed to power contraction. Fast contraction, slow elongation, and calcium-triggering are hallmarks of myoneme-based motion. The biochemical basis of this motion and the molecular mechanism that supports such fast speeds are not well understood. Previous work suggests that myoneme structures in some protists are rich in centrin and Sfi1 homologs, two proteins that may underlie contraction. Centrin undergoes a significant conformational change in the presence of calcium, allowing it to bind to other centrin molecules. To understand contraction, we measure changes in cortical structures and model contraction of the whole cell and of the underlying protein complexes. We provide evidence that centrin/Sfi1 structures are responsible for contraction, which we propose is powered by a modulated entropic spring. Using this model, we recapitulate organismal-scale contraction in mesh simulation experiments and demonstrate the importance of structural organization of myoneme in a fishnet-like structure. These results provide a cohesive, multiscale model for the contraction of . Deeper understanding of how single cells can execute extreme shape changes holds potential for advancing cell biophysics, synthetically engineering contractile machinery, and cellular-inspired engineering designs.

摘要

是一种单细胞纤毛虫,能够在不到五毫秒的时间内收缩至其身体长度的四分之一。以分数缩短来衡量,这比由肌动球蛋白驱动的运动快一个数量级。肌动蛋白丝是在许多原生生物皮层附近发现的蛋白质网络,被认为是收缩的动力来源。快速收缩、缓慢伸长和钙触发是基于肌动蛋白丝运动的标志。这种运动的生化基础以及支持如此快速速度的分子机制尚未得到很好的理解。先前的研究表明,一些原生生物中的肌动蛋白丝结构富含中心蛋白和Sfi1同源物,这两种蛋白质可能是收缩的基础。中心蛋白在钙存在的情况下会发生显著的构象变化,使其能够与其他中心蛋白分子结合。为了理解收缩,我们测量皮层结构的变化,并对整个细胞及其潜在的蛋白质复合物的收缩进行建模。我们提供证据表明中心蛋白/Sfi1结构负责收缩,我们认为这是由调制熵弹簧驱动的。使用这个模型,我们在网格模拟实验中重现了生物体尺度的收缩,并证明了肌动蛋白丝在鱼网状结构中结构组织的重要性。这些结果为[具体生物名称]的收缩提供了一个连贯的多尺度模型。对单细胞如何执行极端形状变化的更深入理解,有望推动细胞生物物理学、合成工程收缩机械以及受细胞启发的工程设计的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/334f/11581044/c81c69acafac/nihpp-2024.11.07.622534v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验