Baytas Ozan, Davidson Shawn M, Kauer Julie A, Morrow Eric M
bioRxiv. 2024 Nov 7:2024.11.06.622291. doi: 10.1101/2024.11.06.622291.
Recessive loss-of-function mutations in the mitochondrial enzyme Glutamate Pyruvate Transaminase 2 (GPT2) cause intellectual disability in children. Given this cognitive disorder, and because glutamate metabolism is tightly regulated to sustain excitatory neurotransmission, here we investigate the role of GPT2 in synaptic function. GPT2 catalyzes a reversible reaction interconverting glutamate and pyruvate with alanine and alpha-ketoglutarate, a TCA cycle intermediate; thereby, GPT2 may play an important role in linking mitochondrial tricarboxylic acid (TCA) cycle with synaptic transmission. In mouse brain, we find that GPT2 is enriched in mitochondria of synaptosomes (isolated synaptic terminals). Loss of Gpt2 in mouse appears to lead to reprogramming of glutamate and glutamine metabolism, and to decreased glutamatergic synaptic transmission. Whole-cell patch-clamp recordings in pyramidal neurons of CA1 hippocampal slices from null mice reveal decreased excitatory post-synaptic currents (mEPSCs) without changes in mEPSC frequency, or importantly, changes in inhibitory post-synaptic currents (mIPSCs). Additional evidence of defective glutamate release included reduced levels of glutamate released from null synaptosomes measured biochemically. Glutamate release from synaptosomes was rescued to wild-type levels by alpha-ketoglutarate supplementation. Additionally, we observed evidence of altered metabolism in isolated null synaptosomes: decreased TCA cycle intermediates, and increased glutamate dehydrogenase activity. Notably, alterations in the TCA cycle and the glutamine pool were alleviated by alpha-ketoglutarate supplementation. In conclusion, our data support a model whereby GPT2 mitochondrial activity may contribute to glutamate availability in pre-synaptic terminals, thereby highlighting potential interactions between pre-synaptic mitochondrial metabolism and synaptic transmission.
线粒体酶谷丙转氨酶2(GPT2)的隐性功能丧失突变会导致儿童智力残疾。鉴于这种认知障碍,并且由于谷氨酸代谢受到严格调控以维持兴奋性神经传递,在此我们研究GPT2在突触功能中的作用。GPT2催化谷氨酸和丙酮酸与丙氨酸和α-酮戊二酸(三羧酸循环中间体)之间的可逆反应;因此,GPT2可能在将线粒体三羧酸(TCA)循环与突触传递联系起来方面发挥重要作用。在小鼠大脑中,我们发现GPT2在突触小体(分离的突触末端)的线粒体中富集。小鼠中Gpt2的缺失似乎导致谷氨酸和谷氨酰胺代谢的重新编程,并导致谷氨酸能突触传递减少。对来自基因敲除小鼠的CA1海马切片锥体神经元进行的全细胞膜片钳记录显示,兴奋性突触后电流(微小兴奋性突触后电流,mEPSCs)减少,而mEPSC频率没有变化,重要的是,抑制性突触后电流(微小抑制性突触后电流,mIPSCs)也没有变化。谷氨酸释放缺陷的其他证据包括通过生化方法测得的基因敲除突触小体释放的谷氨酸水平降低。通过补充α-酮戊二酸,突触小体的谷氨酸释放恢复到野生型水平。此外,我们观察到分离的基因敲除突触小体中代谢改变的证据:三羧酸循环中间体减少,谷氨酸脱氢酶活性增加。值得注意的是,补充α-酮戊二酸可减轻三羧酸循环和谷氨酰胺池的改变。总之,我们的数据支持一种模型,即GPT2的线粒体活性可能有助于突触前末端的谷氨酸供应,从而突出了突触前线粒体代谢与突触传递之间的潜在相互作用。