Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, 02912, USA.
Mol Brain. 2024 Nov 27;17(1):87. doi: 10.1186/s13041-024-01154-x.
Recessive loss-of-function mutations in the mitochondrial enzyme Glutamate Pyruvate Transaminase 2 (GPT2) cause intellectual disability in children. Given this cognitive disorder, and because glutamate metabolism is tightly regulated to sustain excitatory neurotransmission, here we investigate the role of GPT2 in synaptic function. GPT2 catalyzes a reversible reaction interconverting glutamate and pyruvate with alanine and alpha-ketoglutarate, a TCA cycle intermediate; thereby, GPT2 may play an important role in linking mitochondrial tricarboxylic acid (TCA) cycle with synaptic transmission. In mouse brain, we find that GPT2 is enriched in mitochondria of synaptosomes (isolated synaptic terminals). Loss of Gpt2 in mouse appears to lead to reprogramming of glutamate and glutamine metabolism, and to decreased glutamatergic synaptic transmission. Whole-cell patch-clamp recordings in pyramidal neurons of CA1 hippocampal slices from Gpt2-null mice reveal decreased excitatory post-synaptic currents (mEPSCs) without changes in mEPSC frequency, or importantly, changes in inhibitory post-synaptic currents (mIPSCs). Additional evidence of defective glutamate release included reduced levels of glutamate released from Gpt2-null synaptosomes measured biochemically. Glutamate release from synaptosomes was rescued to wild-type levels by alpha-ketoglutarate supplementation. Additionally, we observed evidence of altered metabolism in isolated Gpt2-null synaptosomes: decreased TCA cycle intermediates, and increased glutamate dehydrogenase activity. Notably, alterations in the TCA cycle and the glutamine pool were alleviated by alpha-ketoglutarate supplementation. In conclusion, our data support a model whereby GPT2 mitochondrial activity may contribute to glutamate availability in pre-synaptic terminals, thereby highlighting potential interactions between pre-synaptic mitochondrial metabolism and synaptic transmission.
线粒体酶谷氨酸-丙酮酸转氨酶 2 (GPT2) 的隐性失活突变导致儿童智力障碍。鉴于这种认知障碍,以及谷氨酸代谢受到严格调节以维持兴奋性神经递质传递,我们在这里研究 GPT2 在突触功能中的作用。GPT2 催化可逆反应,将谷氨酸和丙酮酸与丙氨酸和α-酮戊二酸(三羧酸循环中间体)相互转化;因此,GPT2 可能在将线粒体三羧酸 (TCA) 循环与突触传递联系起来方面发挥重要作用。在小鼠大脑中,我们发现 GPT2 富集在突触小体(分离的突触末端)的线粒体中。小鼠中 Gpt2 的缺失似乎导致谷氨酸和谷氨酰胺代谢的重新编程,并导致谷氨酸能突触传递减少。从 Gpt2 缺失小鼠的 CA1 海马切片的锥体神经元进行全细胞膜片钳记录显示,兴奋性突触后电流 (mEPSC) 减少,而 mEPSC 频率没有变化,或者更重要的是,抑制性突触后电流 (mIPSC) 没有变化。谷氨酸释放缺陷的其他证据包括从生化上测量的 Gpt2 缺失突触小体释放的谷氨酸水平降低。用α-酮戊二酸补充可将 Gpt2 缺失突触小体的谷氨酸释放恢复到野生型水平。此外,我们观察到分离的 Gpt2 缺失突触小体中代谢发生改变的证据:三羧酸循环中间产物减少,谷氨酸脱氢酶活性增加。值得注意的是,α-酮戊二酸补充缓解了 TCA 循环和谷氨酰胺库的改变。总之,我们的数据支持这样一种模型,即 GPT2 线粒体活性可能有助于前突触末端谷氨酸的可用性,从而突出了前突触线粒体代谢与突触传递之间的潜在相互作用。