Suppr超能文献

用于下一代热电应用的有机多孔材料及其纳米杂化物。

Organic Porous Materials and Their Nanohybrids for Next-Generation Thermoelectric Application.

作者信息

Lin Meng-Hao, Hong Shao-Huan, Ding Jian-Fa, Liu Cheng-Liang

机构信息

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67116-67133. doi: 10.1021/acsami.4c12729. Epub 2024 Nov 22.

Abstract

Thermoelectricity offers a promising solution for reducing carbon emissions by efficiently converting waste heat into electrical energy. However, high-performance thermoelectric materials predominantly consist of rare, toxic, and costly inorganic compounds. Therefore, the development of alternating material systems for high-performance thermoelectric materials is crucial for broader applications. A significant challenge in this field is the strong interdependence of the various thermoelectric parameters, which complicates their simultaneous optimization. Consequently, the methods for decoupling these parameters are required. In this respect, composite technology has emerged as an effective strategy that leverages the advantages of diverse components to enhance the overall performance. After elaborating on the fundamental concepts of thermoelectricity and the challenges in enhancing the thermoelectric performance, the present review provides a comparative analysis of inorganic and organic materials and explores various methods for decoupling the thermoelectric parameters. In addition, the benefits of composite systems are emphasized and a range of low thermal conductivity materials with microporous to macroporous structures are introduced, highlighting their potential thermoelectric applications. Furthermore, the current development obstacles are discussed, and several cutting-edge studies are highlighted, with a focus on the role of high electrical conductivity fillers in enhancing the performance and mechanical properties. Finally, by combining low thermal conductivity materials with high electrical conductivity fillers can achieve superior thermoelectric performance. These insights are intended to guide future research and development in the field of organic porous materials and their nanohybrids in order to promote more sustainable and efficient energy solutions.

摘要

热电效应通过将废热高效转化为电能,为减少碳排放提供了一个有前景的解决方案。然而,高性能热电材料主要由稀有、有毒且昂贵的无机化合物组成。因此,开发高性能热电材料的替代材料体系对于更广泛的应用至关重要。该领域的一个重大挑战是各种热电参数之间存在强烈的相互依存关系,这使得它们的同时优化变得复杂。因此,需要解耦这些参数的方法。在这方面,复合技术已成为一种有效的策略,它利用了不同组分的优势来提高整体性能。在阐述了热电效应的基本概念以及提高热电性能所面临的挑战之后,本综述对无机材料和有机材料进行了比较分析,并探索了各种解耦热电参数的方法。此外,强调了复合体系的优势,并介绍了一系列具有微孔到宏孔结构的低导热率材料,突出了它们潜在的热电应用。此外,还讨论了当前的发展障碍,并重点介绍了几项前沿研究,重点关注高电导率填料在提高性能和机械性能方面的作用。最后,通过将低导热率材料与高电导率填料相结合,可以实现卓越的热电性能。这些见解旨在指导有机多孔材料及其纳米复合材料领域的未来研发,以促进更可持续、更高效的能源解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e077/11647904/6d0d9148ee07/am4c12729_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验