Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
Sorbonne Université, IBPS, CNRS UMR 7622, Laboratoire de Biologie du Développement (LBD), Paris, France.
Methods Mol Biol. 2025;2873:71-92. doi: 10.1007/978-1-0716-4228-3_5.
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is widely used to probe the chromatin landscape of transcription factors, chromatin components, and associated proteins. Conventional ChIP normalization procedures robustly allow estimating differences in local enrichment across genomic regions. Yet, inter-sample comparisons can be biased by technical variability and biological differences. This is notably the case when samples display large differences in the abundance of the target protein or its enrichment at chromatin. For example, epigenome defects are improperly detected or quantified upon large-effect genetic or chemical inhibition of chromatin modifiers. To circumvent these caveats and robustly determine biological variations while minimizing technical variability, ChIP adaptations using an external reference have flourished. Here, we describe a step-by-step protocol employing a reference exogenous chromatin (ChIP-Rx) that allows absolute comparisons of epigenome variations in Arabidopsis samples displaying drastic differences in chromatin mark abundance. In contrast to the originally published ChIP-Rx approach, which assumes that exogenous spike-in references are constant across samples, the method detailed here involves the sequencing of each input sample to account for technical variability in initial reference chromatin contents. We also report a detailed computational workflow with an accompanying Github resource to help in calculating spike-in normalization factors, applying them to normalize epigenome tracks, and performing spike-in normalized inter-sample differential analyses. We propose two ways of computing the spike-in factor: a classically used method based on raw counts and a noise-corrected method using peak detection on the exogenous genome.
染色质免疫沉淀结合深度测序(ChIP-seq)广泛用于探测转录因子、染色质成分和相关蛋白的染色质景观。传统的 ChIP 归一化程序能够稳健地估计基因组区域中局部富集的差异。然而,样本之间的比较可能会受到技术变异性和生物学差异的影响。当样本中目标蛋白的丰度或其在染色质上的富集存在较大差异时,情况尤其如此。例如,在对染色质修饰物进行大效应的遗传或化学抑制时,表观基因组缺陷会被错误地检测或定量。为了规避这些注意事项,并在最小化技术变异性的同时稳健地确定生物学变异,使用外部参考的 ChIP 适应方法蓬勃发展。在这里,我们描述了一个逐步的协议,使用外部参考染色质(ChIP-Rx),允许在显示染色质标记丰度存在巨大差异的拟南芥样本中进行表观基因组变异的绝对比较。与最初发表的 ChIP-Rx 方法不同,该方法假设外源性 Spike-in 参考在样本之间是恒定的,这里详细介绍的方法涉及对每个输入样本进行测序,以解释初始参考染色质含量的技术变异性。我们还报告了一个详细的计算工作流程,并提供了一个伴随的 Github 资源,以帮助计算 Spike-in 归一化因子,将它们应用于归一化表观基因组轨道,并执行 Spike-in 归一化的样本间差异分析。我们提出了两种计算 Spike-in 因子的方法:一种是基于原始计数的经典方法,另一种是使用外源基因组上的峰检测进行噪声校正的方法。