Suppr超能文献

Design and Validation of Specific Oligonucleotide Probes on Planar Magnetic Biosensors.

作者信息

Kim Songeun, Im Jisoo, Wang Shan X, Lee Jung-Rok

机构信息

Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea.

出版信息

Anal Chem. 2024 Dec 10;96(49):19447-19455. doi: 10.1021/acs.analchem.4c03973. Epub 2024 Nov 22.

Abstract

Planar DNA biosensors employ surface-tethered oligonucleotide probes to capture target molecules for diagnostic applications. To improve the sensitivity and specificity of biosensing, hybridization affinities should be enhanced, and cross-hybridization with off-targets must be minimized. To this end, assays can be designed using the thermodynamic properties of hybridization between probes and on-targets or off-targets based on Gibbs free energies and melting temperatures. However, the nature of heterogeneous hybridization between the probes on the surface and the targets in a solution imposes challenges in predicting precise hybridization affinities and the degree of cross-hybridization due to indeterminable thermodynamic penalties induced by the solid surface and its status. Herein, we suggest practical and convenient guidelines for designing oligonucleotide probes based on data obtained from planar magnetic biosensors and thermodynamic properties calculated by using easily accessible solution-phase prediction. The suggested requirements comprised Gibbs free energy ≥ -7.5 kcal mol and melting temperature ≤10 °C below the hybridization temperature, and we validated for the absence of cross-hybridization. Additionally, the effects of secondary structures such as hairpins and homodimers were investigated for better oligonucleotide probe designs. We believe that these practical guidelines will assist researchers in developing planar magnetic biosensors with high sensitivity and specificity for the detection of new targets.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验