University Department of Forensic Sciences, University of Split, Split, Croatia.
PLoS One. 2024 Nov 22;19(11):e0311262. doi: 10.1371/journal.pone.0311262. eCollection 2024.
This study aimed to develop image-analysis-based classification models for distinguishing individuals younger and older than 30 using the medial clavicle. We extracted 2D images of the medial clavicle from multi-slice computed tomography (MSCT) scans from Clinical Hospital Center Split (n = 204). A sample was divided into a training (164 images) and testing (40 images) dataset. The images were loaded into the Orange Data Mining 3.32.0., and transformed into vectors using the pre-trained neural network Painters: A model trained to predict painters from artwork images. We conducted Principal Components Analysis (PCA) to visualize regularities within data and reduce data dimensionality in classification. We employed three classifiers that provided >80% accuracy: Support Vector Machine (SVM), Logistic Regression (LR), and Neutral Network Identity SGD (NNI-SGD). We used 5-fold cross-validation (CV) to obtain optimal variables and performances and validated data on the independent test set, with a standard posterior probabilities (pp) threshold of 0.5 and 0.95. The explainability of the model was accessed visually by analyzing clusters and incorrectly classified images using anthropology field knowledge. Based on the PCA, clavicles clustered into categories under 30 and 40 years, between 40 and 55 years, and over 80 years. The overall accuracy with standard pp ranged from 82.5% to 92.5% for CV and 82.5% to 92.5% for the test set. The posterior probability of 0.95 provided classification accuracy up to 100% but with a lower proportion of images that could be classified. The study showed that image analysis based on a pre-trained deep neural network could contribute to distinguishing clavicles of individuals younger and older than 30.
本研究旨在开发基于图像分析的分类模型,以区分 30 岁以下和 30 岁以上的个体的锁骨。我们从斯普利特临床中心的多层计算机断层扫描(MSCT)扫描中提取了锁骨的 2D 图像(n=204)。将样本分为训练(164 张图像)和测试(40 张图像)数据集。将图像加载到 Orange Data Mining 3.32.0 中,并使用预先训练的神经网络 Painters 将其转换为向量:该模型经过训练,可根据艺术图像预测画家。我们进行了主成分分析(PCA),以可视化数据中的规律并降低分类中的数据维度。我们使用了三种准确率超过 80%的分类器:支持向量机(SVM)、逻辑回归(LR)和 Neutral Network Identity SGD(NNI-SGD)。我们使用 5 折交叉验证(CV)获得最佳变量和性能,并在独立测试集上验证数据,标准后验概率(pp)阈值为 0.5 和 0.95。通过使用人类学领域知识分析聚类和错误分类的图像,从视觉上评估模型的可解释性。基于 PCA,锁骨在 30 岁以下和 40 岁以下、40 岁至 55 岁和 80 岁以上的类别中聚类。使用标准 pp 的 CV 总准确率为 82.5%至 92.5%,测试集为 82.5%至 92.5%。后验概率为 0.95 可提供高达 100%的分类准确率,但可分类的图像比例较低。该研究表明,基于预先训练的深度神经网络的图像分析可以有助于区分 30 岁以下和 30 岁以上的个体的锁骨。