Li Si-Yu, Xu Zhiyue, Wang Yingbo, Han Yingzhuo, Watanabe Kenji, Taniguchi Takashi, Song Aisheng, Ma Tian-Bao, Gao Hong-Jun, Jiang Yuhang, Mao Jinhai
<a href="https://ror.org/05cvf7v30">Institute of Physics, Chinese Academy of Sciences</a>, Beijing 100190, China.
School of Physical Sciences, <a href="https://ror.org/05qbk4x57">University of Chinese Academy of Sciences</a>, Beijing 100049, China.
Phys Rev Lett. 2024 Nov 8;133(19):196401. doi: 10.1103/PhysRevLett.133.196401.
Twisted van der Waals systems have emerged as intriguing arenas for exploring exotic strongly correlated and topological physics, with structural reconstruction and strain playing essential roles in determining their electronic properties. In twisted bilayer graphene aligned with hexagonal boron nitride (TBG/h-BN), the interplay between the two sets of moiré patterns from graphene-graphene (G-G) and graphene-h-BN (G-h-BN) interfaces can trigger notable moiré pattern reconstruction (MPR). Here, we present the quasiperiodic MPR in the TBG/h-BN with two similar moiré wavelengths, wherein the MPR results from the incommensurate mismatch between the wavelengths of the G-G and G-h-BN moiré patterns. The short-range, nearly ordered moiré super-superstructures deviate from moiré quasicrystal and are accompanied by inhomogeneous strain, thereby inducing spatially variable energy separations between the Van Hove singularities (VHs) in the band structures of the TBG near the magic angle. By tuning the carrier densities in our sample, correlated gaps at specific AA sites are observed, uncovering the quantum-dot-like behavior and incoherent characteristics of the AA sites in the TBG. Our findings would give new hints on the microscopic mechanisms underlying the abundant novel quantum phases in the TBG/h-BN.
扭曲的范德华系统已成为探索奇异强关联和拓扑物理的有趣领域,结构重构和应变在决定其电子性质方面起着至关重要的作用。在与六方氮化硼对齐的扭曲双层石墨烯(TBG/h-BN)中,来自石墨烯-石墨烯(G-G)和石墨烯-六方氮化硼(G-h-BN)界面的两组莫尔图案之间的相互作用可引发显著的莫尔图案重构(MPR)。在此,我们展示了具有两个相似莫尔波长的TBG/h-BN中的准周期MPR,其中MPR源于G-G和G-h-BN莫尔图案波长之间的失配。短程、近乎有序的莫尔超超结构偏离莫尔准晶体,并伴随着不均匀应变,从而在接近魔角的TBG能带结构中诱导范霍夫奇点(VHs)之间的空间可变能量分离。通过调节我们样品中的载流子密度,在特定的AA位点观察到相关能隙,揭示了TBG中AA位点的量子点状行为和非相干特性。我们的发现将为TBG/h-BN中丰富的新型量子相背后的微观机制提供新的线索。