Department of Physics, Columbia University, New York, NY, USA.
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
Nature. 2019 Aug;572(7767):95-100. doi: 10.1038/s41586-019-1431-9. Epub 2019 Jul 31.
The electronic properties of heterostructures of atomically thin van der Waals crystals can be modified substantially by moiré superlattice potentials from an interlayer twist between crystals. Moiré tuning of the band structure has led to the recent discovery of superconductivity and correlated insulating phases in twisted bilayer graphene (TBG) near the 'magic angle' of twist of about 1.1 degrees, with a phase diagram reminiscent of high-transition-temperature superconductors. Here we directly map the atomic-scale structural and electronic properties of TBG near the magic angle using scanning tunnelling microscopy and spectroscopy. We observe two distinct van Hove singularities (VHSs) in the local density of states around the magic angle, with an energy separation of 57 millielectronvolts that drops to 40 millielectronvolts with high electron/hole doping. Unexpectedly, the VHS energy separation continues to decrease with decreasing twist angle, with a lowest value of 7 to 13 millielectronvolts at a magic angle of 0.79 degrees. More crucial to the correlated behaviour of this material, we find that at the magic angle, the ratio of the Coulomb interaction to the bandwidth of each individual VHS (U/t) is maximized, which is optimal for electronic Cooper pairing mechanisms. When doped near the half-moiré-band filling, a correlation-induced gap splits the conduction VHS with a maximum size of 6.5 millielectronvolts at 1.15 degrees, dropping to 4 millielectronvolts at 0.79 degrees. We capture the doping-dependent and angle-dependent spectroscopy results using a Hartree-Fock model, which allows us to extract the on-site and nearest-neighbour Coulomb interactions. This analysis yields a U/t of order unity indicating that magic-angle TBG is moderately correlated. In addition, scanning tunnelling spectroscopy maps reveal an energy- and doping-dependent three-fold rotational-symmetry breaking of the local density of states in TBG, with the strongest symmetry breaking near the Fermi level and further enhanced when doped to the correlated gap regime. This indicates the presence of a strong electronic nematic susceptibility or even nematic order in TBG in regions of the phase diagram where superconductivity is observed.
双层扭转石墨烯(TBG)在约 1.1 度的“魔角”附近,通过层间扭转的莫尔超晶格势,其能带结构发生了显著的调制,进而最近发现了超导性和关联绝缘相,其相图类似于高温超导材料。在这里,我们使用扫描隧道显微镜和光谱学直接绘制了魔角附近 TBG 的原子尺度结构和电子特性。我们在魔角附近的局域态密度中观察到两个明显的范霍夫奇点(VHS),其能量分离为 57 毫电子伏特,在高电子/空穴掺杂时降低到 40 毫电子伏特。出乎意料的是,VHS 能量分离随着扭转角的减小而继续减小,在魔角为 0.79 度时,最低值为 7 到 13 毫电子伏特。更关键的是,对于这种材料的关联行为,我们发现,在魔角处,每个 VHS 的库仑相互作用与带宽的比值(U/t)最大化,这对于电子库珀配对机制是最佳的。当在半莫尔能带填充附近掺杂时,一个关联诱导的能隙会分裂传导 VHS,在 1.15 度时最大尺寸为 6.5 毫电子伏特,在 0.79 度时降低到 4 毫电子伏特。我们使用哈特ree-fock 模型捕获了依赖于掺杂和角度的光谱结果,该模型允许我们提取局域态密度的局域和最近邻库仑相互作用。这种分析得出 U/t 约为 1,表明魔角 TBG 具有中等相关性。此外,扫描隧道光谱图谱揭示了 TBG 中局域态密度的能量和掺杂依赖的三重旋转对称性破缺,在费米能级附近对称性破缺最强,在掺杂到相关能隙区域时进一步增强。这表明在观察到超导性的相图区域中,TBG 中存在强烈的电子向列性灵敏度,甚至向列序。