Delplace Florent, Huard-Chauveau Carine, Roux Fabrice, Roby Dominique
Laboratoire des Interactions Plantes-Microbes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France.
Plant Physiol. 2024 Dec 23;197(1). doi: 10.1093/plphys/kiae626.
Molecular mechanisms underlying qualitative resistance have been intensively studied. In contrast, although quantitative disease resistance (QDR) is a common, durable, and broad-spectrum form of immune responses in plants, only a few related functional analyses have been reported. The atypical kinase Resistance related kinase 1 (RKS1) is a major regulator of QDR to the bacterial pathogen Xanthomonas campestris (Xcc) and is positioned in a robust protein-protein decentralized network in Arabidopsis (Arabidopsis thaliana). Among the putative interactors of RKS1 found by yeast two-hybrid screening, we identified the receptor-like kinase MDIS1-interacting receptor-like kinase 2 (MIK2). Here, using multiple complementary strategies including protein-protein interaction tests, mutant analysis, and network reconstruction, we report that MIK2 is a component of RKS1-mediated QDR to Xcc. First, by co-localization experiments, co-immunoprecipitation (Co-IP), and bimolecular fluorescence complementation, we validated the physical interaction between RKS1 and MIK2 at the plasma membrane. Using mik2 mutants, we showed that MIK2 is required for QDR and contributes to resistance to the same level as RKS1. Interestingly, a catalytic mutant of MIK2 interacted with RKS1 but was unable to fully complement the mik2-1 mutant phenotype in response to Xcc. Finally, we investigated the potential role of the MIK2-RKS1 complex as a scaffolding component for the coordination of perception events by constructing a RKS1-MIK2 centered protein-protein interaction network. Eight mutants corresponding to seven RKs in this network showed a strong alteration in QDR to Xcc. Our findings provide insights into the molecular mechanisms underlying the perception events involved in QDR to Xcc.
定性抗性的分子机制已得到深入研究。相比之下,尽管数量抗病性(QDR)是植物免疫反应中一种常见、持久且广谱的形式,但仅有少数相关功能分析的报道。非典型激酶抗性相关激酶1(RKS1)是对细菌病原体野油菜黄单胞菌(Xcc)的QDR的主要调节因子,且位于拟南芥中一个强大的蛋白质 - 蛋白质分散网络中。在通过酵母双杂交筛选发现的RKS1的假定相互作用蛋白中,我们鉴定出了类受体激酶MDIS1相互作用类受体激酶2(MIK2)。在此,我们使用包括蛋白质 - 蛋白质相互作用测试、突变体分析和网络重建在内的多种互补策略,报道MIK2是RKS1介导的对Xcc的QDR的一个组成部分。首先,通过共定位实验、免疫共沉淀(Co - IP)和双分子荧光互补,我们验证了RKS1和MIK2在质膜上的物理相互作用。使用mik2突变体,我们表明MIK2是QDR所必需的,并且对抗性的贡献与RKS1相同。有趣的是,MIK2的催化突变体与RKS1相互作用,但在响应Xcc时无法完全互补mik2 - 1突变体的表型。最后,我们通过构建以RKS1 - MIK2为中心的蛋白质 - 蛋白质相互作用网络,研究了MIK2 - RKS1复合物作为感知事件协调的支架成分的潜在作用。该网络中对应于七个RKs的八个突变体在对Xcc的QDR方面表现出强烈改变。我们的研究结果为Xcc的QDR中涉及的感知事件的分子机制提供了见解。