Lin Ziwei, Guo Ying, Zhang Ruiyuan, Li Yiming, Wu Yue, Sheen Jen, Liu Kun-Hsiang
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China.
Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
Nat Plants. 2025 Jan;11(1):90-104. doi: 10.1038/s41477-024-01865-y. Epub 2024 Nov 22.
Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA-Ca signalling links, imaging ABA-induced increases in Ca concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca ratiometric sensor with a low-nanomolar Ca-binding affinity and a large dynamic range. The subcellular-targeted Ca ratiometric sensor reveals time-resolved and unique spatiotemporal Ca signatures from the initial plasma-membrane nanodomain, to cytosol, to nuclear oscillation. Via receptors and sucrose-non-fermenting1-related protein kinases (SnRK2.2/2.3/2.6), ABA activates low-nanomolar Ca transient and Ca-sensor protein kinase (CPK10/30/32) signalling in the root cap cycle from stem cells to cell detachment. Surprisingly, unlike the prevailing NaCl-stimulated micromolar Ca spike, salt stress induces a low-nanomolar Ca transient through ABA signalling, repressing key transcription factors that dictate cell fate and enzymes that are crucial to root cap maturation and slough. Our findings uncover ABA-Ca-CPK signalling that modulates root cap cycle plasticity in adaptation to adverse environments.
脱落酸(ABA)调控植物的胁迫适应、生长和繁殖。尽管存在广泛的ABA-钙信号联系,但除了保卫细胞外,对ABA诱导的钙浓度增加进行成像一直具有挑战性。在这里,我们使用一种具有低纳摩尔钙结合亲和力和大动态范围的基因编码钙比率传感器,可视化拟南芥不同器官和细胞类型中ABA触发的[Ca]动态变化。亚细胞靶向钙比率传感器揭示了从初始质膜纳米域到细胞质再到核振荡的时间分辨且独特的时空钙信号特征。通过受体和蔗糖非发酵1相关蛋白激酶(SnRK2.2/2.3/2.6),ABA在根冠从干细胞到细胞脱离的循环中激活低纳摩尔钙瞬变和钙传感器蛋白激酶(CPK10/30/32)信号传导。令人惊讶的是,与普遍存在的NaCl刺激引起的微摩尔钙尖峰不同,盐胁迫通过ABA信号传导诱导低纳摩尔钙瞬变,抑制决定细胞命运的关键转录因子以及对根冠成熟和脱落至关重要的酶。我们的研究结果揭示了ABA-钙-CPK信号传导,其调节根冠循环可塑性以适应不利环境。