He Chuansheng, Yang Linlin, Dong Chengyuan, Peng Xiaohui, Ibraheem Yousef, Usoltsev Oleg, Simonelli Laura, He Ren, Cabot Andreu, Lu Yizhong
School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419083. doi: 10.1002/anie.202419083. Epub 2024 Dec 4.
Designing ultrathin transition metal electrocatalysts with optimal surface chemistry state is crucial for oxygen evolution reaction (OER). However, the structure-dependent electrochemical performance and the underlying catalytic mechanisms are still not clearly distinguished. Herein, we synthesize ultrathin CoSe nanosheets (NSs) with subnanometer thickness by incorporating catalytically inactive selenium (Se) into ultrathin Co(OH), thereby switching the OER reaction pathway from adsorbate evolution mechanism (AEM) to oxide path mechanism (OPM). The prepared ultrathin CoSe NSs exhibit an overpotential of 253 mV at 10 mA/cm, outperforming the mostly reported Co-based electrocatalysts. Advanced operando synchrotron spectroscopies and X-ray absorption spectroscopy reveal the ultrathin CoSe NSs, whose surface is reconstructed into Se-doped Co(OH) during the OER process, could trigger direct O*-O* radical coupling rather than OOH* intermediates within AEM pathway thus lowering the energy input. Density functional theory calculations confirm that CoSe NSs with shorter Co-Co bond length and stable Co-Se bond could optimize the rate-determining step barrier via OPM pathway. Besides, rechargeable zinc-air batteries based on CoSe NSs exhibit excellent stability for more than 500 h of continuous charge-discharge cycles at 4 mA/cm. The present study highlights the structural-dependent switch of OER pathways and provides valuable insights for further development of ultrathin OER catalysts.
设计具有最佳表面化学状态的超薄过渡金属电催化剂对于析氧反应(OER)至关重要。然而,结构依赖的电化学性能和潜在的催化机制仍未明确区分。在此,我们通过将催化惰性的硒(Se)引入超薄的Co(OH)中,合成了具有亚纳米厚度的超薄CoSe纳米片(NSs),从而将OER反应途径从吸附质演化机制(AEM)转变为氧化物途径机制(OPM)。制备的超薄CoSe NSs在10 mA/cm²时表现出253 mV的过电位,优于大多数已报道的钴基电催化剂。先进的原位同步辐射光谱和X射线吸收光谱表明,超薄CoSe NSs在OER过程中其表面重构为Se掺杂的Co(OH),可以引发直接的O*-O自由基耦合,而不是AEM途径中的OOH中间体,从而降低能量输入。密度泛函理论计算证实,具有较短Co-Co键长和稳定Co-Se键的CoSe NSs可以通过OPM途径优化速率决定步骤的势垒。此外,基于CoSe NSs的可充电锌空气电池在4 mA/cm²下连续充放电循环超过500小时表现出优异的稳定性。本研究突出了OER途径的结构依赖性转变,并为超薄OER催化剂的进一步发展提供了有价值的见解。