Yang Linlin, He Ren, Botifoll Marc, Zhang Yongcai, Ding Yang, Di Chong, He Chuansheng, Xu Ying, Balcells Lluís, Arbiol Jordi, Zhou Yingtang, Cabot Andreu
Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain.
Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain.
Adv Mater. 2024 Aug;36(31):e2400572. doi: 10.1002/adma.202400572. Epub 2024 Jun 3.
Beyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFeO heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER. NiOOH/MnFeOOH shows a high spin state of Ni, which regulates the OH and O adsorption energy and enables spin alignment of oxygen intermediates. As a result, NiOOH/MnFeOOH electrocatalysts provide excellent OER performance with an overpotential of 261 mV at 10 mA cm. Besides, rechargeable zinc-air batteries based on Ni/MnFeO show a high open circuit potential of 1.56 V and excellent stability for more than 1000 cycles. This outstanding performance is rationalized using density functional theory calculations, which show that the optimal spin state of both Ni active sites and oxygen intermediates facilitates spin-selected charge transport, optimizes the reaction kinetics, and decreases the energy barrier to the evolution of oxygen. This study provides valuable insight into spin polarization modulation by heterojunctions enabling the design of next-generation OER catalysts with boosted performance.
除了优化电子能级外,调节电子自旋构型是一种有效策略(常被忽视),可提高包括析氧反应(OER)在内的一系列催化反应的活性和选择性。这种电子自旋调制通常利用外部磁场来实现,这使其在实际应用中不切实际。在此,通过构建Ni/MnFeO异质结实现自旋调制,其表面在OER过程中重构为NiOOH/MnFeOOH。NiOOH/MnFeOOH显示出Ni的高自旋态,可调节OH和O的吸附能,并使氧中间体实现自旋排列。结果,NiOOH/MnFeOOH电催化剂在10 mA cm时过电位为261 mV,具有优异的OER性能。此外,基于Ni/MnFeO的可充电锌空气电池显示出1.56 V的高开路电位和超过1000次循环的优异稳定性。利用密度泛函理论计算对这种优异性能进行了合理解释,结果表明Ni活性位点和氧中间体的最佳自旋态有利于自旋选择电荷传输,优化反应动力学,并降低析氧的能垒。这项研究为通过异质结进行自旋极化调制提供了有价值的见解,有助于设计性能增强的下一代OER催化剂。