Suppr超能文献

由3D神经网络生成的CT通气图像在预测量化肺功能方面比基于雅可比矩阵和HU DIR的方法有改进。

CT ventilation images produced by a 3D neural network show improvement over the Jacobian and HU DIR-based methods to predict quantized lung function.

作者信息

Wilding-McBride Daryl, Lim Jeremy, Byrne Hilary, O'Brien Ricky

机构信息

Medical Radiations, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.

Image X Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

出版信息

Med Phys. 2025 Feb;52(2):889-898. doi: 10.1002/mp.17532. Epub 2024 Nov 23.

Abstract

BACKGROUND

Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiotherapy plans assume lungs are functionally homogeneous, but evidence suggests that avoidance of high-functioning lung during radiotherapy can reduce the risk of radiation-induced pneumonitis. Radiotherapy avoidance structures can be constructed based on high-function regions indicated in a ventilation map, which can be produced from CT images.

PURPOSE

Existing methods of deriving such a CT ventilation image (CTVI) require the use of deformable image registration (DIR) of peak-inhale and -exhale CT images, which is susceptible to inaccuracy for small or low-intensity regions, and sensitive to image artefacts. To overcome these problems, we use a neural network to predict a ventilation map from breath-hold CT (BHCT).

METHODS

We used the nnU-Net pipeline to train five-fold cross-validated ensemble models to predict a ventilation map (CTVI). The training data were comprised of registered BHCT and Galligas PET images from 20 patients. Three training sets were created to ensure performance was averaged over different test patients. For each set, images from two randomly selected test patients were set aside, and models were trained on the remaining images. The ground truth was established by quantizing the Galligas PET images, assigning each voxel a label of high-function (>70th percentile of intensity), medium-function (between 30th and 70th percentile), or low-function (<30th percentile). For comparison, we created a CTVI with a 2D U-Net (CTVI), and with the Jacobian (CTVI) and Hounsfield Units (CTVI) DIR-based methods which we quantized and labeled in the same way. The Dice similarity coefficient (DSC) and Hausdorff Distance 95th percentile (HD95) of each CTVI with the ground truth were measured separately for each lung function subregion.

RESULTS

CTVI had the highest similarity to the quantized Galligas PET with a mean (range) DSC over all three categories of lung function at 0.68 (0.56 to 0.82), compared with 0.64 (0.47 to 0.75) for CTVI, 0.60 (0.38 to 0.73) for CTVI, and 0.56 (0.30 to 0.75) for CTVI. CTVI had the equal-lowest spatial distance to the quantized Galligas PET averaged over the three categories, with HD95 of 22 mm (9 to 64 mm), compared with 23 mm (9 to 72 mm) for CTVI, 22 mm (12 to 63 mm) for CTVI, and 26 mm (12 to 58 mm) for CTVI.

CONCLUSION

Our 3D neural network produces a quantized CTVI with higher similarity to the ground truth than the 2D U-Net and DIR-based Jacobian and HU methods. As it produces a quantized CTVI directly, CTVI avoids the need for thresholding to identify high-function lung regions. With faster evaluation and improved accuracy, neural networks show promise for the clinical implementation of functional lung avoidance.

摘要

背景

放射性肺炎影响高达33%的非小细胞肺癌(NSCLC)患者,2%的患者会发生致命性肺炎。肺炎风险与肺部受照射的剂量和体积有关。临床放射治疗计划假定肺部功能是均匀的,但有证据表明,在放射治疗期间避开高功能肺组织可降低放射性肺炎的风险。可以根据通气图中所示的高功能区域构建放射治疗避让结构,通气图可由CT图像生成。

目的

现有的获取此类CT通气图像(CTVI)的方法需要对吸气末和呼气末CT图像进行可变形图像配准(DIR),这对于小区域或低强度区域容易产生不准确,并且对图像伪影敏感。为了克服这些问题,我们使用神经网络从屏气CT(BHCT)预测通气图。

方法

我们使用nnU-Net管道训练五折交叉验证的集成模型来预测通气图(CTVI)。训练数据包括来自20名患者的配准后的BHCT和加利加斯PET图像。创建了三个训练集,以确保在不同的测试患者中平均性能。对于每个训练集,将两名随机选择的测试患者的图像留出,模型在其余图像上进行训练。通过对加利加斯PET图像进行量化来确定真值,为每个体素分配一个高功能(强度>第70百分位数)、中等功能(第30至70百分位数之间)或低功能(<第30百分位数)的标签。为了进行比较,我们使用二维U-Net创建了一个CTVI(CTVI),以及使用雅可比(CTVI)和基于Hounsfield单位(CTVI)的DIR方法,我们以相同的方式对其进行量化和标记。分别针对每个肺功能子区域测量每个CTVI与真值之间的骰子相似系数(DSC)和第95百分位数的豪斯多夫距离(HD95)。

结果

CTVI与量化后的加利加斯PET具有最高的相似性,在所有三类肺功能中的平均(范围)DSC为0.68(0.56至0.82),相比之下,CTVI为0.64(0.47至0.75),CTVI为0.60(0.38至0.73),CTVI为0.56(0.30至0.75)。CTVI在三类肺功能上平均与量化后的加利加斯PET的空间距离并列最低,HD95为22毫米(9至64毫米),相比之下,CTVI为23毫米(9至72毫米),CTVI为22毫米(12至63毫米),CTVI为26毫米(12至58毫米)。

结论

我们的三维神经网络生成的量化CTVI与真值的相似性高于二维U-Net以及基于DIR的雅可比和HU方法。由于它直接生成量化的CTVI,CTVI无需进行阈值处理来识别高功能肺区域。神经网络评估速度更快且准确性更高,有望在临床中实现功能性肺避让。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验