Ma Pei, Chen Zhi, Huang Yu-Hua, Zhao Mayang, Li Wen, Li Haojiang, Cao Di, Jiang Yi-Quan, Zhou Ta, Cai Jing, Ren Ge
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, Hong Kong.
Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Centre, Guangzhou, People's Republic of China.
Med Phys. 2025 Jan;52(1):246-256. doi: 10.1002/mp.17466. Epub 2024 Oct 21.
Deep learning-based computed tomography (CT) ventilation imaging (CTVI) is a promising technique for guiding functional lung avoidance radiotherapy (FLART). However, conventional approaches, which rely on anatomical CT data, may overlook important ventilation features due to the lack of motion data integration.
This study aims to develop a novel dual-aware CTVI method that integrates both anatomical information from CT images and motional information from Jacobian maps to generate more accurate ventilation images for FLART.
A dataset of 66 patients with four-dimensional CT (4DCT) images and reference ventilation images (RefVI) was utilized to develop the dual-path fusion network (DPFN) for synthesizing ventilation images (CTVI). The DPFN model was specifically designed to integrate motion data from 4DCT-generated Jacobian maps with anatomical data from average 4DCT images. The DPFN utilized two specialized feature extraction pathways, along with encoders and decoders, designed to handle both 3D average CT images and Jacobian map data. This dual-processing approach enabled the comprehensive extraction of lung ventilation-related features. The performance of DPFN was assessed by comparing CTVI to RefVI using various metrics, including Spearman's correlation coefficients (R), Dice similarity coefficients of high-functional region (DSC), and low-functional region (DSC). Additionally, CTVI was benchmarked against other CTVI methods, including a dual-phase CT-based deep learning method (CTVI), a radiomics-based method (CTVI), a super voxel-based method (CTVI), a Unet-based method (CTVI), and two deformable registration-based methods (CTVI and CTVI).
In the test group, the mean R between CTVI and RefVI was 0.70, significantly outperforming CTVI (0.68), CTVI (0.58), CTVI (0.62), and CTVI (0.66), with p < 0.05. Furthermore, the DSC and DSC values of CTVI were 0.64 and 0.80, respectively, outperforming CTVI (0.63; 0.73) and CTVI (0.62; 0.77). The performance of CTVI was also significantly better than that of CTVI and CTVI.
A novel dual-aware CTVI model that integrates anatomical and motion information was developed to synthesize lung ventilation images. It was shown that the accuracy of lung ventilation estimation could be significantly enhanced by incorporating motional information, particularly in patients with tumor-induced blockages. This approach has the potential to improve the accuracy of CTVI, enabling more effective FLART.
基于深度学习的计算机断层扫描(CT)通气成像(CTVI)是一种用于指导功能性肺避让放疗(FLART)的有前景的技术。然而,依赖解剖学CT数据的传统方法可能由于缺乏运动数据整合而忽略重要的通气特征。
本研究旨在开发一种新型的双感知CTVI方法,该方法整合来自CT图像的解剖学信息和来自雅可比映射的运动信息,以生成用于FLART的更准确的通气图像。
利用一个包含66例患者的四维CT(4DCT)图像和参考通气图像(RefVI)的数据集来开发用于合成通气图像(CTVI)的双路径融合网络(DPFN)。DPFN模型专门设计用于将4DCT生成的雅可比映射中的运动数据与平均4DCT图像中的解剖学数据整合。DPFN利用两个专门的特征提取路径,以及编码器和解码器,设计用于处理3D平均CT图像和雅可比映射数据。这种双处理方法能够全面提取与肺通气相关的特征。通过使用各种指标(包括斯皮尔曼相关系数(R)、高功能区域的骰子相似系数(DSC)和低功能区域的骰子相似系数(DSC))将CTVI与RefVI进行比较,评估DPFN的性能。此外,将CTVI与其他CTVI方法进行基准测试,包括基于双期CT的深度学习方法(CTVI)、基于放射组学的方法(CTVI)、基于超体素的方法(CTVI)、基于Unet的方法(CTVI)以及两种基于可变形配准的方法(CTVI和CTVI)。
在测试组中,CTVI与RefVI之间的平均R为0.70,显著优于CTVI(0.68)、CTVI(0.58)、CTVI(0.62)和CTVI(0.66),p < 0.05。此外,CTVI的DSC和DSC值分别为0.64和0.80,优于CTVI(分别为0.63;0.73)和CTVI(分别为0.62;0.77)。CTVI的性能也显著优于CTVI和CTVI。
开发了一种整合解剖学和运动信息的新型双感知CTVI模型来合成肺通气图像。结果表明,通过纳入运动信息可显著提高肺通气估计的准确性,特别是在肿瘤引起阻塞的患者中。这种方法有可能提高CTVI的准确性,实现更有效的FLART。