Lee Boram, Son Mu Geun, Song Shin Ae, Kim Kiyoung, Woo Ju Young, Choa Yongho, Kang Joonhee, Lim Sung Nam
Micro/nano Manufacturing R&D Group, Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea; HYU-KITECH Joint Department, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
Department of Nano Fusion Technology, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
J Colloid Interface Sci. 2025 Feb 15;680(Pt B):640-650. doi: 10.1016/j.jcis.2024.11.097. Epub 2024 Nov 19.
Aqueous zinc-ion batteries (AZIBs) are highly attractive as energy-storage systems owing to their inherent safety, low cost, and simple assembly processes. However, the growth of Zn dendrites and side reactions at the Zn metal anode significantly degrade their electrochemical performance. To address these challenges, this study introduces a surface modification that increases the lifespan and cycling stability of AZIBs by constructing an artificial zinc sulfide (ZnS) protective layer on the Zn anode. For the first time, the fundamental mechanism of uniform Zn plating underneath the ZnS protective layer is demonstrated through experiments and density functional theory simulations. In addition, the artificial ZnS protective layer of optimized thickness is formed using a simple, thickness-controllable coating method. Notably, the ZnS protective layer favors Zn atom adsorption while suppressing clustering, enabling uniform Zn deposition. In addition, defects within the thin ZnS coating modulate Zn adsorption and diffusion, which facilitates Zn plating underneath the protective layer. This mechanism promotes uniform Zn nucleation and enhances the kinetics of Zn, preventing dendrite formation and side reactions and thereby improving the stability and electrochemical performance of the battery. The resulting Zn@ZnS||Zn@ZnS symmetric cell exhibits a cycle life of over 1600 h and excellent rate performance. Moreover, it maintains a high coulombic efficiency of 99.5 % and capacity retention of 80.1 % after 1500 cycles at a current density of 0.5 A g, demonstrating exceptional long-term cycling stability. These insights into developing effective artificial protective layers that enable uniform nucleation will promote durable, dendrite-free Zn anodes for advanced AZIBs.
水系锌离子电池(AZIBs)因其固有的安全性、低成本和简单的组装工艺,作为储能系统极具吸引力。然而,锌金属阳极上锌枝晶的生长和副反应显著降低了其电化学性能。为应对这些挑战,本研究引入了一种表面改性方法,通过在锌阳极上构建人工硫化锌(ZnS)保护层来提高AZIBs的寿命和循环稳定性。首次通过实验和密度泛函理论模拟证明了ZnS保护层下均匀锌沉积的基本机制。此外,采用一种简单的、厚度可控的涂层方法形成了优化厚度的人工ZnS保护层。值得注意的是,ZnS保护层有利于锌原子吸附,同时抑制团聚,从而实现均匀的锌沉积。此外,薄ZnS涂层中的缺陷调节了锌的吸附和扩散,这有利于在保护层下进行锌电镀。这种机制促进了均匀的锌成核并增强了锌的动力学,防止枝晶形成和副反应,从而提高了电池的稳定性和电化学性能。由此得到的Zn@ZnS||Zn@ZnS对称电池表现出超过1600小时的循环寿命和优异的倍率性能。此外,在0.5 A g的电流密度下进行1500次循环后,它保持了99.5%的高库仑效率和80.1%的容量保持率,展现出卓越的长期循环稳定性。这些关于开发有效人工保护层以实现均匀成核的见解将推动用于先进AZIBs的耐用且无枝晶的锌阳极的发展。