Suppr超能文献

TV-Net:用于多变量时间序列分类与解释的时变特征协调网络

TV-Net: Temporal-Variable feature harmonizing Network for multivariate time series classification and interpretation.

作者信息

Yue Jinghang, Wang Jing, Zhang Shuo, Ma Zhaoyang, Shi Yuxing, Lin Youfang

机构信息

School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing 100044, China.

Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing 100044, China; Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Neural Netw. 2025 Feb;182:106896. doi: 10.1016/j.neunet.2024.106896. Epub 2024 Nov 14.

Abstract

Multivariate time series classification (MTSC), which identifies categories of multiple sensor signals recorded in continuous time, is widely used in various fields such as transportation, finance, and medical treatment. The focused challenge remains learning the dependencies between subsequences to capture discriminative patterns while providing convincing explanations. In this paper, we propose a temporal-variable parallel deep learning framework to mine global and local features to achieve a win-win situation in performance and interpretability. Specifically, for harmonizing the inattention blindness of global features, we introduce a graph attention mechanism with global awareness (GAT-g), where the learning of edge representations incorporates both inter-node relationships and the node-to-graph context. Furthermore, for evaluating the feature combinations utility, we exploit game interactions for the first time, which quantifies the utility of feature combination through Shapley values to illustrate the dynamically coordinating representation ability of the model for diverse time series features. In addition, the interpretation module leverages temporal and variable subspace attention distributions to provide instantiated explanations with additive computational complexity, enhancing the comprehension of prediction results. Experimental evaluation on the University of East Anglia (UEA) archive of 30 multivariate time series datasets shows that the proposed method outperforms 12 state-of-the-art methods on 11 datasets.

摘要

多变量时间序列分类(MTSC)用于识别连续时间记录的多个传感器信号的类别,在交通、金融和医疗等各个领域广泛应用。面临的主要挑战仍然是学习子序列之间的依赖关系,以捕捉有区别的模式,同时提供有说服力的解释。在本文中,我们提出了一种时间可变并行深度学习框架,挖掘全局和局部特征,以在性能和可解释性方面实现双赢。具体而言,为了协调全局特征的注意力盲视,我们引入了一种具有全局感知的图注意力机制(GAT-g),其中边表示的学习结合了节点间关系和节点到图的上下文。此外,为了评估特征组合的效用,我们首次利用博弈交互,通过沙普利值量化特征组合的效用,以说明模型对不同时间序列特征的动态协调表示能力。此外,解释模块利用时间和可变子空间注意力分布,以加法计算复杂度提供实例化解释,增强对预测结果的理解。对东安格利亚大学(UEA)的30个多变量时间序列数据集存档进行的实验评估表明,该方法在11个数据集上优于12种最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验