Suppr超能文献

用于12导联心电图分类的多尺度特征提取与自适应多通道图神经网络融合

Fusion of multi-scale feature extraction and adaptive multi-channel graph neural network for 12-lead ECG classification.

作者信息

Chen Teng, Ma Yumei, Pan Zhenkuan, Wang Weining, Yu Jinpeng

机构信息

College of Computer Science & Technology, Qingdao University, Qingdao 266071, PR China.

School of Automation, Qingdao University, Qingdao 266071, PR China.

出版信息

Comput Methods Programs Biomed. 2025 Jun;265:108725. doi: 10.1016/j.cmpb.2025.108725. Epub 2025 Mar 24.

Abstract

BACKGROUND AND OBJECTIVE

The 12-lead electrocardiography (ECG) is a widely used diagnostic method in clinical practice for cardiovascular diseases. The potential correlation between interlead signals is an important reference for clinical diagnosis but is often overlooked by most deep learning methods. Although graph neural networks can capture the associations between leads through edge topology, the complex correlations inherent in 12-lead ECG may involve edge topology, node features, or their combination.

METHODS

In this study, we propose a multi-scale adaptive graph fusion network (MSAGFN) model, which fuses multi-scale feature extraction and adaptive multi-channel graph neural network (AMGNN) for 12-lead ECG classification. The proposed MSAGFN model first extracts multi-scale features individually from 12 leads and then utilizes these features as nodes to construct feature graphs and topology graphs. To efficiently capture the most correlated information from the feature graphs and topology graphs, AMGNN iteratively performs a series of graph operations to learn the final graph-level representations for prediction. Moreover, we incorporate consistency and disparity constraints into our model to further refine the learned features.

RESULTS

Our model was validated on the PTB-XL dataset, achieving an area under the receiver operating characteristic curve score of 0.937, mean accuracy of 0.894, and maximum F1 score of 0.815. These results surpass the corresponding metrics of state-of-the-art methods. Additionally, we conducted ablation studies to further demonstrate the effectiveness of our model.

CONCLUSIONS

Our study demonstrates that, in 12-lead ECG classification, by constructing topology graphs based on physiological relationships and feature graphs based on lead feature relationships, and effectively integrating them, we can fully explore and utilize the complementary characteristics of the two graph structures. By combining these structures, we construct a comprehensive data view, significantly enhancing the feature representation and classification accuracy.

摘要

背景与目的

12导联心电图(ECG)是临床实践中广泛用于心血管疾病的诊断方法。导联间信号的潜在相关性是临床诊断的重要参考,但大多深度学习方法常常忽略这一点。尽管图神经网络可以通过边拓扑捕获导联间的关联,但12导联ECG中固有的复杂相关性可能涉及边拓扑、节点特征或它们的组合。

方法

在本研究中,我们提出了一种多尺度自适应图融合网络(MSAGFN)模型,该模型融合多尺度特征提取和自适应多通道图神经网络(AMGNN)用于12导联ECG分类。所提出的MSAGFN模型首先从12个导联中分别提取多尺度特征,然后将这些特征作为节点来构建特征图和拓扑图。为了从特征图和拓扑图中高效捕获最相关的信息,AMGNN迭代执行一系列图操作以学习最终的图级表示用于预测。此外,我们将一致性和差异约束纳入我们的模型以进一步优化所学习的特征。

结果

我们的模型在PTB-XL数据集上得到验证,受试者工作特征曲线下面积得分为0.937,平均准确率为0.894,最大F1得分为0.815。这些结果超过了现有最先进方法的相应指标。此外,我们进行了消融研究以进一步证明我们模型的有效性。

结论

我们的研究表明,在12导联ECG分类中,通过基于生理关系构建拓扑图和基于导联特征关系构建特征图,并有效地将它们整合,可以充分探索和利用这两种图结构的互补特性。通过组合这些结构,我们构建了一个全面的数据视图,显著增强了特征表示和分类准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验